精英家教网 > 高中数学 > 题目详情
16.若X~N(-1,62),且P(-3≤X≤-1)=0.4,则P(X≥1)等于(  )
A.0.1B.0.2C.0.3D.0.4

分析 根据随机变量X~N(-1,62),可得曲线的对称轴为μ=-1,利用对称性,即可求得P(X≥1).

解答 解:∵随机变量X~N(-1,62),
∴曲线的对称轴为μ=-1
∵P(-3≤X≤-1)=0.4,
∴P(-1≤X≤1)=0.4,
∴P(X≥1)=0.5-0.4=0.1.
故选:A.

点评 本题考查正态分布,考查求概率,解题的关键是确定曲线的对称轴为μ=1,利用对称性解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex-a(x+1)(a∈R)(e是自然对数的底数).
(1)若f(x)的图象与x轴相切,求实数a的值;
(2)当0≤a≤1时,求证:f(x)≥0;
(3)求证:对任意正整数n,都有(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且满足2Sn=3an-3,n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项公式为bn=$\frac{1}{{{{log}_3}{a_{3n-1}}{{log}_3}{a_{3n+2}}}}$,求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求已知点P(5,0)及圆C:x2+y2-4x-8y-5=0,若直线l过点P且被圆C截得的弦AB长是8,则直线 l的方程是x-5=0或7x+24y-35=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=|sinπx|,则f(1)+f(2)+f(3)+…+f(2010)=(  )
A.0B.$\sqrt{3}$C.-$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足$\left\{\begin{array}{l}y≥x+2\\ x+y≤6\\ x≥1\end{array}$,其中,则实数$\frac{y}{x+1}$的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点到渐近线的距离为3,则双曲线C的虚轴长为(  )
A.3B.6C.$2\sqrt{5}$D.$2\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知-$\frac{π}{6}$<α<$\frac{π}{6}$,且cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,则sin(2α+$\frac{π}{12}$)的值为(  )
A.$\frac{17\sqrt{2}}{50}$B.$\frac{31\sqrt{2}}{50}$C.$\frac{7\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

同步练习册答案