精英家教网 > 高中数学 > 题目详情
11.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且满足a2+c2=b2+ac.
(1)求∠B的大小;
(2)若b=$\sqrt{7}$,a+c=4,求△ABC的面积.

分析 (1)由已知即余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,结合范围B∈(0,π),即可求B的值.
(2)根据余弦定理将b=$\sqrt{7}$,a+c=4代入求出ac的值,再由三角形的面积公式可求得结果.

解答 解:(1)∵a2+c2=b2+ac.
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.
(II)在△ABC中,由余弦定理得:
b2=a2+c2-2ac•cosB=(a+c)2-2ac-2ac•cosB
将b=$\sqrt{7}$,a+c=4代入整理得ac=3
故S△ABC=$\frac{1}{2}$acsinB=$\frac{3}{2}$sin60°=$\frac{3\sqrt{3}}{4}$.

点评 本题主要考查三角形面积公式和余弦定理的应用,在求值时经常用到边和角的相互转化,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(1)判断函数f(x)奇偶性;
(2)求证:f(x)在R上为增函数;
(3)若函数g(x)=f(x)-$\frac{{4}^{x}-m}{{2}^{x}+1}$在[-2,2]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的方程kx2+$\frac{1}{2}$kx+k-2=0有两个实根,其中一根在(0,1)之间,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足an+1=5an-6an-1(n≥2),且a1=1,a2=4,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,a1=$\frac{1}{2}$,Sn为数列|an|的前n项和,且Sn与$\frac{1}{{a}_{n}}$的一个等比中项为n(n∈N*),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,2),B(n-1,3),C(-1,3-n).
(1)如果∠A是直角,求实数n的值;
(2)求过坐标原点,且与△ABC的高AD垂直的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知点P(2,3),C(5,6),若在以点C为圆心,r为半径的圆上存在不同的两点A,B,使得$\overrightarrow{PA}$-2$\overrightarrow{AB}$=$\overrightarrow{0}$,则r的取值范围为[$\frac{3}{5}$$\sqrt{2}$,3$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα=$\sqrt{2}$,求$\frac{sin{{\;}^{2}α}^{\;}-sinαcosα-3co{s}^{2}a}{5sinαcosα+si{n}^{2}α+1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等差数列{an}中,a1>0,若其前n顶和为Sn,且有S14=S8,那么当Sn取最大值时.n的值为11.

查看答案和解析>>

同步练习册答案