精英家教网 > 高中数学 > 题目详情
19.(-3)0+$\sqrt{{{(-\frac{1}{2})}^2}}-{({\frac{8}{27}})^{-\frac{1}{3}}}$=0.

分析 根据指数幂的运算性质计算即可.

解答 解:原式=1+$\frac{1}{2}$-$\frac{3}{2}$=0,
故答案为:0.

点评 本题考查了指数幂的运算性质,熟练掌握指数幂的运算性质是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若实数x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,则$\frac{y}{2x+2}$的最大值为$\frac{3}{4}$,点(x,y)所在的区域的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的首项为1,公差为2,则a8的值等于(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:a1=a,${a_{n+1}}=\frac{1}{{2-{a_n}}}$
(1)求a2,a3,a4的值,并猜想出an的表达式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.把23化为二进制数是10111(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x+5;函数g(x)=ax(a>0且a≠1).
(1)求f(x)的解析式;
(2)若g(2)=9,且g[f(x)]≥k对x∈[-1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直三棱柱ABC-A1B1C1的所有棱长都相等,且D,E,F分别为BC,BB1,AA1的中点.
(Ⅰ) 求证:平面B1FC∥平面EAD;
(Ⅱ)求证:平面CBC1⊥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知对任意x∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,求a的取值范围.
(2)已知对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过P(5,4)作圆C:x2+y2-2x-2y-3=0的切线,切点分别为A,B.则四边形PACB的面积是(  )
A.5B.10C.15D.20

查看答案和解析>>

同步练习册答案