精英家教网 > 高中数学 > 题目详情
与双曲线2x2-2y2=1有相同的焦点,且离心率互为倒数的椭圆的方程为
 
分析:根据题意,算出双曲线的焦点在x轴上,半焦距c=1且离心率e=
2
.设椭圆的方程为
x2
m2
+
y2
n2
=1(m>n>0)
,由椭圆与双曲线有相同焦点且离心率互为倒数,建立关于m、n的方程组,解之即可得出所求椭圆的方程.
解答:解:双曲线2x2-2y2=1化成标准形式,得
x2
1
2
-
y2
1
2
=1

∴双曲线焦点在x轴上,且a2=b2=
1
2
,可得c2=
1
2
+
1
2
=1,离心率e=
c
a
=
2

∵椭圆的焦点与双曲线2x2-2y2=1相同,离心率与双曲线2x2-2y2=1互为倒数,
∴设椭圆的方程为
x2
m2
+
y2
n2
=1(m>n>0)

可得
m2-n2=1
1
m
=
2
2
,解之得m=
2
,n=1,因此所求椭圆的方程为
x2
2
+y2=1

故答案为:
x2
2
+y2=1
点评:本题给出椭圆与已知双曲线有相同的焦点,且离心率与双曲线互为倒数,求椭圆的方程.着重考查了椭圆、双曲线的标准方程与简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰安二模)给出下列三个命题:
①若直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
②双曲线C:
x2
16
-
y2
9
=-1
的离心率为
5
3

③若C1x2+y2+2x=0,⊙C2x2+y2+2y-1=0,则这两圆恰有2条公切线;
④若直线l1:a2x-y+6=0与直线l2:4x-(a-3)+9-0互相垂直,则a=-1.
其中正确命题的序号是
②③
②③
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:①若直线l过抛物线y=2x2的焦点,且与这条抛物线交于A、B两点,则|AB|的最小值为2;②双曲线C:
x2
16
-
y2
9
=-1
的离心率为
3
5
;③若⊙C1:x2+y2+2x=0⊙C2:x2+y2+2y-1=0,则这两圆恰有2条公切线;④若直线l1:a2x-y+6=0与直线l2:4x-(a-3)y+9=9互相垂直,则a=-1.
其中正确命题的序号是
②③
②③
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下五个命题中:
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F为它的一个焦点,则以PF为直径的圆与以长轴为直径的圆相切.
其中真命题的序号为
③④⑤
③④⑤
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是______.(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案