精英家教网 > 高中数学 > 题目详情

点M(3,4)到圆x2+y2=1上一点的最大值等于________.

6
分析:M(3,4)与圆心的连线的延长线与该圆的交点之间的距离就是M(3,4)到圆x2+y2=1上一点的最大值.
解答:∵圆x2+y2=1的圆心O(0,0),
∴|MO|==5,设MO的延长线与圆x2+y2=1相交于P,
则|MP|即为点M(3,4)到圆x2+y2=1上一点的最大值,
而|MP|=5+1=6.
故答案为:6.
点评:本题考查点与圆的位置关系,关键在于把握M(3,4)与圆心的连线的延长线与该圆的交点之间的距离就是所求,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)如图展示了一个由区间(0,1)到实数集R的对应过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图③中直线AM与x轴交于点N(n,0),则m对应n,记作f(m)=n.给出下列结论:

(1)方程f(x)=0的解是x=
1
2
; 
(2)f(
1
4
)=1
; 
(3)f(x)是奇函数;
(4)f(x)在定义域上单调递增;   
(5)f(x)的图象关于点(
1
2
,0)
对称.
上述说法中正确命题的序号是
(1)(4)(5)
(1)(4)(5)
(填出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=ax(a>0),抛物线上一点N(x0, 2
2
) (x0>1)
到抛物线的焦点F的距离是3.
(1)求a的值;
(2)已知动直线l过点P(4,0),交抛物线C于A、B两点.
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
5
,且过点P(4,
12
5
),A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式的离心率为数学公式,且过点P(4,数学公式),A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省淮安市淮阴中学高三(下)3月综合测试数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,且过点P(4,),A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

同步练习册答案