精英家教网 > 高中数学 > 题目详情

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

1)根据表中数据,建立y关于t的线性回归方程

2)根据线性回归方程预测2019年该地区该农产品的年产量.

【答案】1y=0.16t+6.44.(27.72万吨.

【解析】

1)利用最小二乘法求出线性回归方程的系数,即可得到其线性回归方程.

22019年对应的,将代入回归方程即可求出预测值.

解(1)由题意可知:=1+2+3+4+5+6=3.5=6.6+6.7+7+7.1+7.2+7.4=7

=2.52+1.52+0.52+0.52+1.52+2.52=17.5

,又

所以y关于t的线性回归方程为

2)由(1)可得,当年份为2019年时,年份代码

此时

所以可预测2019年该地区该农产品的年产量约为7.72万吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.

若平均投入生产两种产品,可获得多少利润?

问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或

者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元.参考数据:

A. 176 B. 100 C. 77 D. 88

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且a2=2,a4=
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为(
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

作物产量(kg)

300

500

概率

0.5

0.5

作物市场价格(元/kg)

6

10

概率

0.4

0.6


(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

1)求所取3张卡片上的数字完全相同的概率;

2表示所取3张卡片上的数字的中位数,求的分布列与数学期望.

(注:若三个数满足,则称为这三个数的中位数).

查看答案和解析>>

同步练习册答案