ÉèµÈ±ÈÊýÁÐ{an}µÄÊ×ÏîΪa1=2£¬2n2-£¨t+bn£©n+
3
2
bn=0(t¡ÊR£¬n¡ÊN*)
£®¹«±ÈΪq£¨qΪÕýÕûÊý£©£¬ÇÒÂú×ã3a3ÊÇ8a1Óëa5µÄµÈ²îÖÐÏÊýÁÐ{bn}Âú×ã
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊÔÈ·¶¨tµÄÖµ£¬Ê¹µÃÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨3£©µ±{bn}ΪµÈ²îÊýÁÐʱ£¬¶Ôÿ¸öÕýÕûÊýk£¬ÔÚakÓëak+1Ö®¼ä²åÈëbk¸ö2£¬µÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®ÉèTnÊÇÊýÁÐ{cn}µÄǰnÏîºÍ£¬ÊÔÇóÂú×ãTm=2cm+1µÄËùÓÐÕýÕûÊým£®
¿¼µã£ºµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÒÑÖª¿ÉÇó³öqµÄÖµ£¬´Ó¶ø¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉÒÑÖª¿ÉÇóbn=
2n2-tn
n-
3
2
£¬´Ó¶ø¿ÉÒÀ´Îд³öb1£¬b2£¬b3ÈôÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬ÔòÓÐb1+b3=2b2£¬´Ó¶ø¿ÉÈ·¶¨tµÄÖµ£»
£¨3£©ÒòΪc1=c2=c3=2£¬c4=4£¬c5=c6=2£¬¼ìÑéÖªm=1£¬3£¬4²»ºÏÌâÒ⣬m=2ÊʺÏÌâÒ⣮µ±m¡Ý5ʱ£¬ÈôºóÌíÈëµÄÊý2=cm+1ÔòÒ»¶¨²»ÊʺÏÌâÒ⣬´Ó¶øcm+1±Ø¶¨ÊÇÊýÁÐ{an}ÖеÄijһÏÉècm+1=ak+1Ôò2k-k2-k+1=0£®Óɺ¯ÊýµÄµ¥µ÷ÐÔÖª2k-k2-k+1£¾0¶Ôk¡Ê[5£¬+¡Þ£©ºã³ÉÁ¢£¬¼´ÓÐm¡Ý5¶¼²»ºÏÌâÒ⣮¹ÊÂú×ãÌâÒâµÄÕýÕûÊýÖ»ÓÐm=2£®
½â´ð£º ½â£º£¨1£©ÒòΪ6a3=8a1+a5£¬ËùÒÔ6q2=8+q4£¬
½âµÃq2=4»òq2=2£¨ÉáÈ¥£©£¬Ôòq=2£®
ÓÖa1=2£¬ËùÒÔan=2n
£¨2£©ÓÉ 2n2-£¨t+bn£©n+
3
2
bn=0£¬µÃbn=
2n2-tn
n-
3
2
£¬
ËùÒÔb1=2t-4£¬b2=16-4t£¬b3=12-2t£¬ÔòÓÉb1+b3=2b2£¬µÃt=3£®
¶øt=3ʱ£¬bn=2n£¬ÓÉbn+1-bn=2£¨³£Êý£©Öª´ËʱÊýÁÐ{bn}ΪµÈ²îÊýÁУ®
£¨3£©ÒòΪc1=c2=c3=2£¬c4=4£¬c5=c6=2£¬¼ìÑéÖªm=1£¬3£¬4²»ºÏÌâÒ⣬m=2ÊʺÏÌâÒ⣮
µ±m¡Ý5ʱ£¬ÈôºóÌíÈëµÄÊý2=cm+1ÔòÒ»¶¨²»ÊʺÏÌâÒ⣬´Ó¶øcm+1±Ø¶¨ÊÇÊýÁÐ{an}ÖеÄijһÏÉècm+1=ak+1Ôò
£¨2+22+23+¡­+2k£©+2¡Á£¨b1+b2+b3+¡­+bk£©=2¡Á2k+1
ËùÒÔ
2(1-2k)
1-2
+
(2+2k)k
2
¡Á2=2¡Á2k+1
¼´ÓÐ2k-k2-k+1=0£®
¼Çf£¨k£©=2k-k2-k+1£¬Ôòf¡ä£¨k£©=£¨ln2£©•2k-2k-1£®
¡ß1+2+22+¡­+2k-1=2k-1
¡à2k=£¨1+2+22+¡­+2k-1£©+1£¾[1+2+22+23+24+22£¨k-5£©]+1=4k+12
ÓÖÒòΪ2ln2=ln4£¾1
¡àf¡ä£¨k£©£¾2ln2£¨2k+6£©-£¨2k+1£©£¾£¨2k+6£©-£¨2k+1£©£¾5£¾0£®
´Ó¶øf£¨k£©ÔÚ[5£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
ÓÉf£¨5£©=32-25-5+1=3£¾0Öªf£¨k£©£¾0¶Ôk¡Ê[5£¬+¡Þ£©ºã³ÉÁ¢£®
¡àf£¨k£©=0ÔÚ[5£¬+¡Þ£©Î޽⣬¼´ÓÐm¡Ý5¶¼²»ºÏÌâÒ⣮
×ÛÉÏ¿ÉÖª£¬Âú×ãÌâÒâµÄÕýÕûÊýÖ»ÓÐm=2£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²ìÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄ×ÛºÏÓ¦Ó㬿¼²ìÁ˺¯Êýµ¥µ÷ÐÔµÄÖ¤Ã÷£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ²
x2
25
+
y2
9
=1µÄ½¹µãΪF1£¬F2£¬
£¨1£©PΪÍÖÔ²ÉϵÄÒ»µã£¬ÒÑÖª
PF1
PF2
=0£¬Çó¡÷F1PF2µÄÃæ»ý£»
£¨2£©¶¯µãPÔÚÍÖÔ²µÄÒ»¶¯µã£¬¶¨µãM£¨8£¬0£©£¬ÇóPMÖеãQ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA={x|x2-2x-3¡Ü0£¬x¡ÊR}£¬B={x|m-3¡Üx¡Üm+3£¬m¡ÊR}£®
£¨¢ñ£©ÈôA¡ÈB={x|-1¡Üx¡Ü6}£¬ÇóʵÊýmµÄÖµ£»
£¨¢ò£©Èô¡°x¡ÊA¡±ÊÇ¡°x¡ÊB¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={x||x-a|¡Ü2}£¬B={x|lg£¨x2+6x+9£©£¾0}£®
£¨¢ñ£©Ç󼯺ÏAºÍ∁RB£»
£¨¢ò£©ÈôA⊆B£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖ±Ïßy=kx+2ÓëÍÖÔ²2x2+3y2=6ÓÐÁ½¸ö¹«¹²µã£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬Sn=nan-2n£¨n-1£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÉèÊýÁÐbn=an-n+1£¬ÇÒ{
1
bnbn+1
}µÄǰnÏîºÍΪTn£¬ÇóÖ¤£º
1
4
¡ÜTn£¼
1
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x|x-a|£¨a¡ÊR£©£®
£¨¢ñ£©µ±a=2ʱ£¬ÔÚ¸ø¶¨µÄÆ½ÃæÖ±½Ç×ø±êϵÖÐ×÷³öf£¨x£©µÄͼÏ󣬲¢Ð´³öf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©µ±a=-2ʱ£¬Çóº¯Êýy=f£¨x£©ÔÚÇø¼ä£¨-
2
-1£¬2]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªABΪ¹ýË«ÇúÏßCµÄÒ»¸ö½¹µãFÇÒ´¹Ö±ÓÚʵÖáµÄÏÒ£¬ÇÒ|AB|Ϊ˫ÇúÏßCµÄʵÖ᳤µÄ2±¶£¬ÔòË«ÇúÏßCµÄÀëÐÄÂÊΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=x3-3x2-9x+3£¬Èôº¯Êýg£¨x£©=f£¨x£©-m£¬ÔÚx¡Ê[-2£¬5]ÉÏÓÐ3¸öÁãµã£¬ÔòmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A¡¢[1£¬8]
B¡¢£¨-24£¬1]
C¡¢[1£¬8£©
D¡¢£¨-24£¬8£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸