精英家教网 > 高中数学 > 题目详情
16.奔腾球队有2名队长和10名队员,现选派6人上场参加比赛,如果场上最少有1名队长,那么共有462种不同选法.

分析 分两类,第一类,:“有1名队长”的选法为C21C105种,第二类,“有2名队长”的选法为C22C104种,根据分类计算原理可得.

解答 解:“有1名队长”的选法为C21C105种,
“有2名队长”的选法为C22C104种,
∴共有C21C105+C22C104=462种.
故答案为:462.

点评 本题主要考查了分类计数原理,如何分类时关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2-6x+8<0},B={x|x2-4ax+3a2<0}.
(1)若a=-1,求A∩(∁RB);
(2)若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设全集U={-2,-1,1,2,3},A={-2,1}.B={x|(x+1)(mx-4)=0}(m∈R).
(1)当m=2时,求∁u(A∪B);
(1)若A∩B≠∅,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.已知cos2C=-$\frac{1}{8}$.
(1)求sinC;
(2)当a=$\frac{\sqrt{2}}{3}$c,且b=3$\sqrt{7}$时,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知偶函数f(x)的定义域为[-10,10],当x≥0时,f(x)=$\left\{\begin{array}{l}{\sqrt{4{-x}^{2}}}&{x∈[0,2]}\\{\sqrt{4{-(x-4)}^{2}}}&{x∈[2,6]}\\{\sqrt{4{-(x-8)}^{2}}}&{x∈[6,10]}\end{array}\right.$,若关于x的方程f(x)-kx=0有且只有三个不同的实数根,则实数k的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{15}}{15}$)B.($\frac{\sqrt{15}}{15}$,$\frac{\sqrt{3}}{3}$)
C.(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{15}}{15}$)∪($\frac{\sqrt{15}}{15}$,$\frac{\sqrt{3}}{3}$)D.(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{15}}{15}$]∪[$\frac{\sqrt{15}}{15}$,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC的面积为S,角A、B、C所对的边分别为a、b、c,且2S=$\sqrt{3}$AB•AC.
(Ⅰ)求角A的大小:
(Ⅱ)若b、c是方程x2-2$\sqrt{3}$x+2=0的两个根.求边a的长度及△ABC的外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在0°~360°范围内,与-30°终边相同的角是(  )
A.30°B.60°C.210°D.330°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.
为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上的球场中轴线上,y轴垂直于地平面,单位长度为1米,已知若不考虑球网的影响,网球发射后的轨迹在方程y=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.
(Ⅰ)求发射器的最大射程;
(Ⅱ)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若4π<α<6π,且α与$-\frac{6π}{5}$的终边相同,则α=$\frac{24π}{5}$.

查看答案和解析>>

同步练习册答案