精英家教网 > 高中数学 > 题目详情
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0。
(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(2)设过点P的直线l1与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;
(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由。
解:(1)设直线的斜率为k(k存在),
则方程为,即
又圆C的圆心为(3,-2),半径r=3,
, 解得
所以,直线的方程为,即
的斜率不存在时,的方程为x=2,经验证x=2也满足条件。
(2)由于,而弦心距
所以
所以P恰为MN的中点,
故以MN为直径的圆Q的方程为
(3)把直线,代入圆C的方程,
消去y,整理得
由于直线交圆C于A,B两点,

,解得:
则实数a的取值范围是
设符合条件的实数a存在,由于垂直平分弦AB,故圆心C(3,-2)必在上,
所以的斜率,而,所以
由于
故不存在实数a,使得过点P(2,0)的直线垂直平分弦AB。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;
(Ⅲ)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若圆C与圆x2+y2+2x-2y+m=0外切,求m的值;
(2)设过点P的直线l1与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若直线l过点P且被圆C截得的弦长为4
2
,求直线l的方程;
(2)设过点P的直线l1与圆C交于M、N两点,当P恰为MN的中点时,求以线段MN为直径的圆Q的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,0)及⊙C:x2+y2-6x+4y+4=0.

(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;

(2)设过点P的直线与⊙C交A、B两点,当|AB|=4时,求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年天津市汉沽区高二(上)期中数学试卷(必修2)(解析版) 题型:解答题

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;
(Ⅲ)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案