精英家教网 > 高中数学 > 题目详情

对于定义域为D的函数f(x),若存在区间M=[a,b]⊆D(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的“等值区间”.给出下列四个函数:
①f(x)=2x;②f(x)=x3;③f(x)=sinx;④f(x)=log2x+1.
则存在“等值区间”的函数的个数是


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
B
分析:根据“等值区间”的定义,要想说明函数存在“等值区间”,只要举出一个符合定义的区间M即可,但要说明函数没有“等值区间”,可以用反证明法来说明.由此对四个函数逐一进行判断,即可得到答案.
解答:解:①对于函数f(x)=2x,若存在“等值区间”[a,b],由于函数是定义域内的增函数,故有2a=a,2b=b,
即方程2x=x有两个解,即y=2x和y=x的图象有两个交点,这与y=2x和y=x的图象没有公共点相矛盾,故①不存在
“等值区间”.
②对于函数f(x)=x3存在“等值区间”,如 x∈[0,1]时,f(x)=x3∈[0,1].
③对于函数f(x)=sinx,若正弦函数存在等值区间[a,b],则在区间[a,b]上有sina=a,sinb=b,由正弦函数的值域知道[a,b]⊆[-1,1],但在区间]⊆[-1,1]上仅有sin0=0,所以函数f(x)=sinx没有“等值区间”;
④对于 f(x)=log2x+1,由于函数是定义域内的增函数,故在区间[1,2]上有f(1)=1,f(2)=2,所以函数存在“等值区间”[1,2].
故选B
点评:本题考查的知识点是函数的概念及其构造要求,考查了函数的值域,在说明一个函数没有“等值区间”时,利用函数的性质、图象结合反证法证明是解答本题的关键,属于创新题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)求证:函数y=g(x)=3-
5
x
不存在“和谐区间”.
(2)已知:函数y=
(a2+a)x-1
a2x
(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n-m的最大值.
(3)易知,函数y=x是以任一区间[m,n]为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的y=x及形如y=
bx+c
ax
的函数为例)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数f(x),若存在区间M=[a,b]⊆D(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的“等值区间”.给出下列三个函数:
f(x)=(
12
)x
;   ②f(x)=x3;    ③f(x)=log2x+1
则存在“等值区间”的函数的个数是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
(x>0)是否为闭函数?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县一模)定义:对于定义域为D的函数f(x),如果存在t∈D,使得f(t+1)=f(t)+f(1)成立,称函数f(x)在D上是“T”函数.已知下列函数:
①f(x)=
1x
; 
②f(x)=log2(x2+2);
③f(x)=2x(x∈(0,+∞)); 
④f(x)=cosπx(x∈[0,1]),其中属于“T”函数的序号是
.(写出所有满足要求的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数f(x),若同时满足下列条件:①f(x)在D内有单调性;②存在区间[a,b]⊆D,使f(x)在区间[a,b]上的值域也为[a,b],则称f(x)为D上的“和谐”函数,[a,b]为函数f(x)的“和谐”区间.
(Ⅰ)求“和谐”函数y=x3符合条件的“和谐”区间;
(Ⅱ)判断函数f(x)=x+
4
x
(x>0)
是否为“和谐”函数?并说明理由.
(Ⅲ)若函数g(x)=
x+4
+m
是“和谐”函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案