精英家教网 > 高中数学 > 题目详情
17.在正方体AC1中,求直线A1C1与直线B1C所成的角度.

分析 连结AC、AB1,由AC∥A1C1,得∠ACB1是直线A1C1与直线B1C所成角,由此能求出直线A1C1与直线B1C所成的角的大小.

解答 解:如图,连结AC、AB1
∵AC∥A1C1
∴∠ACB1是直线A1C1与直线B1C所成角,
∵AC=B1C=AB1
∴∠ACB1=$\frac{π}{3}$,
∴直线A1C1与直线B1C所成的角为$\frac{π}{3}$.

点评 本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若函数f(x)对一切x∈R,都有f(x+2)=$\frac{1}{f(x)}$,且f(1)=-1,则f(5)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知线段AB的端点B的坐标是(-4,3),端点A在圆(x-1)2+y2=4上运动,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$sinα=\frac{1}{4}$,且α是第二象限的角.则$sin(α+\frac{3π}{2})$=$\frac{{\sqrt{15}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:${y_1}=3\sqrt{2}sin({100πt}),{y_2}=3cos({100πt+\frac{π}{4}})$,则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.$6\sqrt{2}$B.6C.$3\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C的极坐标方程为2ρsinθ+ρcosθ=10,将曲线C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α为参数)经过伸缩变换$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后得到曲线C2
(1)求曲线C2的参数方程;
(2)若点M在曲线C2上运动,试求出M到曲线C的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线C是顶点在原点,以y轴为对称轴的抛物线,过抛物线的焦点且垂直于y轴的直线l被抛物线截得的弦长为8,则抛物线的焦点到顶点的距离为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)已知a,b,c分别为△ABC的内角A,B,C的对边,A为锐角,a=2$\sqrt{3}$,c=4,且f(A)是f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-55=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

查看答案和解析>>

同步练习册答案