精英家教网 > 高中数学 > 题目详情
已知椭圆(a>b>0)的焦距为,离心率为
(1)求椭圆的方程;
(2)设过椭圆顶点B(0,b),斜率为k的直线交椭圆于另一点D,交x轴于点E,且|BD|,|BE|,|DE|成等比数列,求k2的值。
解:(1)由已知
解得a=2,
所以b2=a2-c2=1
椭圆的方程为
(2)由(1)得过B点的直线为y=kx+1,
得(4k2+1)x2+8kx=0
所以
依题意k≠0,
因为|BD|,|BE|,|DE|成等比数列
所以|BE|2=|BD||DE|
所以b2=(1- yD)|yD|,即(1-yD)|yD|=1,
当yD>0时,,无解,
当yD<0时,,解得
所以,解得
所以,当|BD|,|BE|,|DE|成等比数列时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆+=1 (a>b>0)的左焦点到右准线的距离为,中心到准线的距离为,则椭圆的方程为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)

已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).

      (i)若,求直线l的倾斜角;

      (ii)若点Q在线段AB的垂直平分线上,且.求的值.

查看答案和解析>>

科目:高中数学 来源:2014届吉林省白山市高三摸底考试理科数学试卷(解析版) 题型:解答题

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.

(I)求椭圆C的方程;

(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(天津卷解析版) 题型:解答题

已知椭圆(a>b>0),点在椭圆上。

(I)求椭圆的离心率。

(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

 

查看答案和解析>>

科目:高中数学 来源:2012届河北冀州中学高二年级下学期第三次月考题(文) 题型:解答题

已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为

    (i)若,求直线l的倾斜角;

    (ii)若点Q在线段AB的垂直平分线上,且.求的值.

 

查看答案和解析>>

同步练习册答案