精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,一个焦点为F(-2,0),且长轴长与短轴长的比是2∶
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点,当||最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围。
解:设椭圆C的方程为(a>b>0)
由题意,得
解得a2=16,b2=12
所以椭圆C的方程为
(2)设P(x,y)为椭圆上的动点,
由于椭圆方程为,故-4≤x≤4
因为=(x-m,y),
所以||2=(x-m)2+y2=(x-m)2+12·(1-)=x2-2mx+m2+12=(x-4m)2+12-3m2
因为当||最小时,点P恰好落在椭圆的右顶点,
即当x=4时,||2取得最小值
而x∈[-4,4],
故有4m≥4,解得m≥1
又点M在椭圆的长轴上,所以-4≤m≤4
故实数m的取值范围是[1,4]。
练习册系列答案
相关习题

科目:高中数学 来源:山东省济宁市2012届高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

点,左焦

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省高二下学期期末考试理科数学 题型:解答题

(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原

(1)求该椭圆的标准方程;

(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;

(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

 

查看答案和解析>>

同步练习册答案