精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos(2ωx-
π
6
)-cos(2ωx+
π
6
)+1-2sin2ωx,(x∈R,ω>0)的最小正周期为π.
(I)求ω的值;
(II)求函数f(x)在区间[-
π
4
π
3
]上的最大值和最小值.
(I)f(x)=cos2ωx•cos
π
6
+sin2ωx•sin
π
6
-cos2ωx•cos
π
6
+sin2ωx•sin
π
6
+cos2ωx

=sin2ωx+cos2ω x=
2
sin(2ωx+
π
4
)
.…(5分)
因为f(x)是最小正周期为π,所以
,因此ω=1.…(7分)
(II)由(I)可知,f(x)=
2
sin(2x+
π
4
)

因为-
π
4
≤x≤
π
3
,所以-
π
4
≤2x+
π
4
11π
12
.…(9分)
于是当2x+
π
4
=
π
2
,即x=
π
8
时,f(x)取得最大值
2
;…(11分)
2x+
π
4
=-
π
4
,即x=-
π
4
时,f(x)取得最小值-1.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案