精英家教网 > 高中数学 > 题目详情
18.计算:sin75°cos15°-cos75°sin15°=$\sqrt{3}$.

分析 利用正弦函数两角差公式求解.

解答 解:sin75°cos15°-cos75°sin15°
=sin(75°-15°)
=sin60°
=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查三角函数的求法,是基础题,解题时要认真审题,注意弦函数两角差公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某生产车间为了检测其加工的零件的质量,检验人员需抽取同批次的零件样本进行检测指标评分.若检测指标评分大于60分的零件为合格零件,指标评分不超过40分的零件将直接被淘汰,指标评分在(40,60]内的零件可能被修复也可能被淘汰.现质检员小张检测出200个合格零件,根据指标评分绘制的频率分布直方图如图所示,
(1)求出频率分布直方图中a的值;
(2)估计这200个零件指标评分的平均数和中位数;
(Ⅱ)根据已有的经验,可能被修复的零件个体被修复的概率如下表:
 零件检测指标评分所在区间 (40,50](50,60]
 每个零件个体被修复的概率 $\frac{1}{3}$ $\frac{1}{2}$
假设每个零件被修复与否相互独立.现有3个零件的检测指标评分(单位:分)为:38,45,52,
①求这3个零件中,至多有2个不被修复而淘汰的概率;
②记这3个零件被修复的个数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}cos\frac{πx}{2},-1≤x≤1\\{x^2}-1,|x|>1\end{array}\right.$,则关于x的方程f2(x)-3f(x)+2=0的实根的个数是 (  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知不等式x2+(6-a)x+9-3a>0,若该不等式对任意x∈[-2,0]恒成立,则a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知抛物线的顶点在原点,焦点在x轴上,△ABC三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y-20=0,则抛物线方程为y2=16x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知am=-2,则a2m的值为(  )
A.-4B.4C.(-2)mD.2m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等差数列{an}满足a1+a9=8,则a4+a5+a6=(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=f(x)是定义在R上的偶函数,且f(x+1)=f(x-1),当x∈[0,1]时,f(x)=2x-1,则函数g(x)=f(x)-ln$\frac{x}{2}$的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)设点P为曲线C上的动点,求点P到直线l距离的最大值.

查看答案和解析>>

同步练习册答案