精英家教网 > 高中数学 > 题目详情

如图所示的几何体中,四边形是矩形,平面平面,已知,若分别是线段上的动点,则的最小值为           

 

【答案】

3

【解析】

试题分析:?将四棱锥E-ABCD的侧面AED、DEC、CEB展开铺平如图,?连接AB,分别交CE和DE于N、M点,此时的的最小。

在△ABE中,AB2=AE2+BE2-2AE·BE·cos120°=9,所以的最小值为3.

考点:面面垂直的性质定理。

点评:此题的关键是将三个侧面展开平铺,使在同一平面上,此时的最小值即为线段AB的长。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=
2
,AE=EC=1.
(Ⅰ)求证:AE⊥平面BCEF;
(Ⅱ)求三棱锥D-ACF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•吉安二模)如图所示的几何体中,底面ABCD是矩形,AB=9,BC=6,EF∥平面ABCD,EF=3,△ADE和△BCF
都是正三角形,则几何体EFABCD的体积为
63
2
63
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)求四面体FBCD的体积;
(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
(1)证明:DF⊥平面ABE;
(2)求二面角A-BD-F大小的余弦值.

查看答案和解析>>

同步练习册答案