精英家教网 > 高中数学 > 题目详情
2+
3
2-
3
的等差中项是______.
2+
3
2-
3
的等差中项为x,
根据题意得:2x=(2+
3
)+(2-
3
)=4,
解得:x=2,
2+
3
2-
3
的等差中项为2.
故答案为:2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a1=1,点(an,an+1)在函数f(x)=x2+4x+2的图象上,其中n=1,2,3,4,…
(1)证明:数列{lg(an+2)}是等比数列;
(2)设数列{an+2}的前n项积为Tn,求Tn及数列{an}的通项公式;
(3)已知bn
1
an+1
1
an+3
的等差中项,数列{bn}的前n项和为Sn,求证:
3
8
Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是正项等比数列,公比q≠1,若lga2是lga1和1+lga4的等差中项,且a1a2a3=1.
(1)求数列{an}的通项公式
(2)设cn=
1n(3-lgan)
(n∈N*)
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济南一模)已知:数列{an}的前n项和为Sn,a1=3且当n≥2n∈N+满足Sn-1是an与-3的等差中项.
(1)求a2,a3,a4
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项,若bn=log2an+1,则数列{bn}的前n项和Sn=
n(n+3)
2
n(n+3)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县一模)已知数列{an}的前n项和为Sn,a1=3,且当n≥2,n∈N*时Sn-1是an与-3的等差中项,则数列{an}的通项an=
3n
3n

查看答案和解析>>

同步练习册答案