精英家教网 > 高中数学 > 题目详情
3.欲将正六边形的各边和各条对角线都染为n种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n的最小值是7?

分析 先确定20≤Cn3,得n≥6,再说明n=6是不能构造出来的,即可得出结论.

解答 解:从六个顶点选出3个顶点组成三角形,共有C63=20(种),这也是所有的三角形种数.
由于每个三角形使用不同的3色组合,那么这样的组合最多有Cn3
三角形数不能超过组合种数,于是有20≤Cn3,得n≥6.
当然,n=6是不能构造出来的,因为假设有两个顶点连的一边染色红,那么剩下染红色的边必定在剩下的4个顶点中(否则与“任何3个顶点作为顶点的三角形有3种不同颜色的边”矛盾)
这样下去得出一种颜色最多存在3边,由于共C62=15条边
而15÷6=2…3,必有3种颜色每种各染了三条边,设为1,2,3三色,
不妨AB,CD,EF染1,BC,DE,AF染2,
则剩下4种色怎么染都有三角形使用相同的3色组合,
所以n≥7,
故答案为:7.

点评 本题考查组合知识,考查反证法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-2x-3≤0.x∈R},B={m-1≤x≤5-m,m∈R}
(1)若A∩B={x|0≤x≤3},求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若x∈[-$\frac{π}{3}$,$\frac{π}{4}$],求函数y=$\frac{1}{co{s}^{2}x}$+2tanx+1的最值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,求cos15°,cos165°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=g(x)的图象过点(4,5),且在R上单调递增.若函数f(x)=$\left\{\begin{array}{l}{{g}^{-1}(x+2)(x≥3)}\\{(a-1)x+1(x<3)}\end{array}\right.$存在反函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.掷2个骰子,至少有一个1点的概率为$\frac{11}{36}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\underset{lim}{n→∞}$an=3,$\underset{lim}{n→∞}$bn=$\frac{1}{3}$,则$\underset{lim}{n→∞}$$\frac{{a}_{n}-3{b}_{n}}{2{a}_{n}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙两袋装有大小相同的红球和白球,其中甲袋装有1个红球,4个白球;乙袋装有2个红球,3个白球.现从甲、乙两袋中各任取2个球.
(Ⅰ)用ξ表示取到的4个球中红球的个数,求ξ的分布列及ξ的数学期望;
(Ⅱ)求取到的4个球中至少有2个红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义集合运算A⊙B={c|c=a+b,a∈A,b∈B},设A={0,1,2},B={3,4,5},则集合A⊙B的真子集个数为(  )
A.63B.31C.15D.16

查看答案和解析>>

同步练习册答案