分析 (1)证明△CAF∽△ADF,即可证明AF•DA=AC•DF
(2)CE•ED=AE•EB,可得CE=2,AF2=FC•FD,即4=FC•(FC+2+1),即可求CF的长.
解答 (1)证明:∵AB是圆O的直径,AF⊥AB,
∴∠CAF=∠ADF,
∴△CAF∽△ADF,
∴$\frac{CA}{AD}=\frac{AF}{DF}$,
∴AF•DA=AC•DF
(2)解:∵圆的半径为2,OE=EB,ED=$\frac{3}{2}$,
∴CE•ED=AE•EB,即CE•$\frac{3}{2}$=3•1,∴CE=2
∵AF=2,AF是切线,
∴AF2=FC•FD,即4=FC•(FC+2+1),
∴FC=1.
点评 本题考查三角形相似的判定与性质,考查相交弦定理,切割线定理,考查相似分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | $[{1,\frac{1}{2}+ln2}]$ | C. | (-∞,e-1] | D. | [1,e-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com