精英家教网 > 高中数学 > 题目详情
如图为一半径是3m的水轮,水轮圆心O距离水面2m,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间t(s)满足函数关系y=Asin(ωt+ϕ)+2(ω>0,A>0),则ω=   
【答案】分析:先根据h的最大和最小值求得A和k,利用周期求得ω.
解答:解:∵水轮的半径为3,水轮圆心O距离水面2m,
A=3,k=2,
又水轮每分钟旋转4圈,故转一圈需要15秒,
∴T=15=
∴ω=
故答案为:
点评:题以实际问题为载体,考查三角函数模型的构建,考查学生分析解决问题的能力,解题的关键是构建三角函数式,利用待定系数法求得.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图为一半径是3m的水轮,水轮圆心O距离水面2m,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间t(s)满足函数关系y=Asin(ωt+?)+2(ω>0,A>0),则ω=
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图为一半径是3m的水轮,水轮圆心O距离水面2m,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间t(s)满足函数关系y=Asin(ωt+?)+2(ω>0,A>0),则ω=________.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市张家港市梁丰高级中学高三(上)周日数学试卷(5)(解析版) 题型:填空题

如图为一半径是3m的水轮,水轮圆心O距离水面2m,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间t(s)满足函数关系y=Asin(ωt+ϕ)+2(ω>0,A>0),则ω=   

查看答案和解析>>

同步练习册答案