精英家教网 > 高中数学 > 题目详情
4.[普通中学做]设H、P是△ABC所在平面上异于A、B、C的两点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{h}$分别表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$.已知$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow{b}$•$\overrightarrow{h}$,|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=5,|$\overrightarrow{BC}$|=6,则|$\overrightarrow{AH}$|=(  )
A.$\frac{7}{4}$B.$\frac{7}{5}$C.$\frac{15}{4}$D.$\frac{5}{2}$

分析 根据向量数量积的公式和条件进行化简得到H是△ABC的垂心,结合三角形的边角关系进行求解即可.

解答 解:由题意知$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\overrightarrow{PC}$•$\overrightarrow{PH}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{PA}$•$\overrightarrow{PH}$,
即$\overrightarrow{PB}$•($\overrightarrow{PA}$-$\overrightarrow{PC}$)+$\overrightarrow{PH}$•($\overrightarrow{PC}$-$\overrightarrow{PA}$)=0,即$\overrightarrow{CA}$•$\overrightarrow{HB}$=0.
同理得$\overrightarrow{AB}$•$\overrightarrow{HC}$=0,故H是△ABC的垂心,如图所示,
在Rt△CAD中,tan∠CAD=$\frac{3}{4}$,
∵∠CAD=∠CBE,
∴$\frac{DH}{3}$=$\frac{3}{4}$,即DH=$\frac{9}{4}$,
∴AH=4-$\frac{9}{4}$=$\frac{7}{4}$,
故选:A.

点评 本题主要考查向量数量积的应用,根据条件判断H是△ABC的垂心是解决本题的关键.综合性较强,考查学生的转化和运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=x3+ax2+b(a,b∈R),当x=$\frac{4}{3}$时,f(x)取极小值0,则实数b=$\frac{32}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中x=0是极值点的函数是(  )
A.f(x)=|x|B.f(x)=-x3C.f(x)=sinx-xD.f(x)=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)若a=1,求曲线f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f(x)+$\frac{a}{x}$,求函数y=g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某学校决定从高一(1)班60名学生中利用随机数表法抽取10人进行调研,先将60名学生按01,02,…,60进行编号;如果从第8行第7列的数开始从左向右读,则抽取到的第4个人的编号为(  )
(下面摘取了第7行到第9行)
8442 1753 3157 2455 0688  7704 7447 6721 7633 5026  8392 
6301 5316 5916 9275 3862  9821 5071 7512 8673 5807  4439 
1326    3321 1342 7864 1607      8252 0744 3815 0324    4299    7931.
A.16B.38C.21D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某班n名学生的综合素质测评成绩(百分制)频率分布直方图如图所示,已知70~80分数段的学生人数为27人,90~95分数段的学生中女生为2人.
(1)求a,n的值;(2)若从90~95分数段内的学生中随机抽取2人,求其中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=(sinx+cosx)cosx,则f(x)的最大值是$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2ex-b,其中b∈R.
(Ⅰ)证明:对于任意x1,x2∈(-∞,0],都有f(x1)-f(x2)≤$\frac{4}{{e}^{2}}$;
(Ⅱ)讨论函数f(x)的零点个数(结论不需要证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知坐标平面内两个定点F1(-4,0),F2(4,0),且动点M满足|MF1|+|MF2|=8,则点M的轨迹是(  )
A.两个点B.一个椭圆C.一条线段D.两条直线

查看答案和解析>>

同步练习册答案