精英家教网 > 高中数学 > 题目详情

已知f(x)=ax3+3x2-x+1,a∈R.

(Ⅰ)当a=-3时,求证:f(x)在R上是减函数;

(Ⅱ)如果对x∈R不等式(x)≤4x恒成立,求实数a的取值范围.

答案:
解析:

  解:(Ⅰ)当时,  1分

  ∵  3分

    4分

  ∴上是减函数  5分

  (Ⅱ)∵不等式恒成立

  即不等式恒成立

  ∴不等式恒成立  7分

  当时, 不恒成立  8分

  当时,不等式恒成立  9分

  即

  ∴  12分

  当时,不等式不恒成立  13分

  综上所述,的取值范围是  14分


练习册系列答案
相关习题

科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修1-1) 2009-2010学年 第22期 总第178期 人教课标版 题型:044

已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.

(1)试求常数a,b,c的值;

(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.

查看答案和解析>>

科目:高中数学 来源:导学大课堂选修数学1-1苏教版 苏教版 题型:013

已知f(x)=ax3+bx2+cx+d(a>0)为增函数,则

[  ]

A.b2-4ac>0

B.b>0,c>0

C.b=0,c>0

D.b2-3ac<0

查看答案和解析>>

科目:高中数学 来源:2012高三数学一轮复习单元练习题 导数(2) 题型:044

已知f(x)=ax3-2ax+b在区间[-2,1]上最大值是5,最小值是-11,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又f′=.

(1)求f(x)的解析式;

(2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2013届度黑龙江龙东地区高二第一学期期末文科数学试卷 题型:解答题

已知f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值.

(1)求a、b、c的值;

(2)求f(x)在区间[-3,3]上的最大值和最小值.

 

查看答案和解析>>

同步练习册答案