精英家教网 > 高中数学 > 题目详情
设y=f(x)为三次函数,且图象关于原点对称,当x=时,f(x)的极小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.
【答案】分析:(1)先利用待定系数法设出f(x)的解析式,再根据奇偶性以及极值建立等式关系,求出参数即可;
(2)先利用导数研究函数在(1,+∞)上的单调性,任设两点并规定大小,表示出斜率即可判断符号.
解答:解:(Ⅰ)设f(x)=ax3+bx2+cx+d(a≠0)
∵其图象关于原点对称,即f(-x)=-f(x)
得-ax3+bx2-cx+d=-ax3-bx2-cx-d
∴b=d=0,
则有f(x)=ax3+cx
由f′(x)=3ax2+c,依题意得f′()=0

f()=②(5分)
由①②得a=4,c=-3故所求的解析式为:f(x)=4x3-3x.(6分)
(Ⅱ)由f′(x)=12x2-3>0
解得:x>或x<(8分)
∵(1,+∞)?(,+∞)
∴x∈(1,+∞)时,函数f(x)单调递增;(10分)
设(x1,y1),(x2,y2)是x∈(1,+∞)时,
函数f(x)图象上任意两点,
且x2>x1,则有y2>y1
∴过这两点的直线的斜率.(12分)
点评:本题主要考查了利用导数研究函数的极值,以及直线的斜率的求解,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设y=f(x)为三次函数,且图象关于原点对称,当x=
12
时,f(x)的极小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f'(x)是函数y=f(x)的导数,f''是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据这一发现,求:
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
对称中心为
(
1
2
,1)
(
1
2
,1)

(2)计算f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+f(
4
2011
)+…+f(
2010
2011
)
=
2010
2010

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设y=f(x)为三次函数,且图象关于原点对称,当x=
1
2
时,f(x)的极小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.

查看答案和解析>>

科目:高中数学 来源:2009年广东省湛江市高考数学一模试卷(文科)(解析版) 题型:解答题

设y=f(x)为三次函数,且图象关于原点对称,当x=时,f(x)的极小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)证明:当x∈(1,+∞)时,函数f(x)图象上任意两点的连线的斜率恒大于0.

查看答案和解析>>

同步练习册答案