精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2,-1≤x≤1
1
x
,x>1
,则
e
-1
f(x)dx=
 
.(e为自然对数的底数)
考点:定积分,分段函数的应用
专题:导数的综合应用
分析:利用定积分的可加性,将所求分为-1到1和1到e的定积分,然后分别求出各段的定积分.
解答: 解:
e
-1
f(x)dx=
1
-1
x2dx+
e
1
1
x
dx
=
1
3
x3
|
1
-1
+lnx
|
e
1
=
2
3
+1=
5
3

故答案为:
5
3
点评:本题考查了定积分的运算法则,首先根据定积分的可加性将所求分成两段上的积分,然后分别求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

九个人排成三行三列的方阵,从中任选三人,则至少有两人位于同行或同列的概率为(  )
A、
3
7
B、
4
7
C、
1
14
D、
13
14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=a-bsin(4x-
π
3
)(b>0)的最大值是5,最小值是1,求函数y=-
2bsinx
a
+5的最大值,并求出此时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(sinx+cosx)-1.
(1)求函数的最小正周期和最值;
(2)画出函数在区间[-
π
2
π
2
]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)与g(x)是定义在同一区间D上的两个函数,若?x0∈D,使得|f(x0)-g(x0)|≤1,则称f(x)和g(x)是D上的“接近函数”,D称为“接近区间”;若?x∈D,都有|f(x)-g(x)|>1,则称f(x)和g(x)是D上的“远离函数”,D称为“远离区间”.给出以下命题:
①f(x)=x2+1与g(x)=x2+
3
2
是(-∞,+∞)上的“接近函数”;
②f(x)=x2-3x+4与g(x)=2x-3的一个“远离区间”可以是[2,3];
③f(x)=
1-x2
和g(x)=-x+b(b>
2
)是(-1,1)上的“接近函数”,则
2
<b≤
2
+1;
④若f(x)=
lnx
x
+2ex与g(x)=x2+a+e2(e是自然对数的底数)是[1,+∞)上的“远离函数”,则a>1+
2
e

其中的真命题有
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=ax-2x+2对于1≤x≤4,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若执行如图的程序框图,则输出的k值是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的方程:log4{2log3[1+3log2x]}=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx•(2cosx-sinx)+cos2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)设
π
4
<α<
π
2
,且f(α)=-
5
2
13
,求sin2α的值.

查看答案和解析>>

同步练习册答案