精英家教网 > 高中数学 > 题目详情

已知点数学公式在幂函数f(x)的图象上,点数学公式在幂函数g(x)的图象上.
(1)求函数f(x),g(x)的解析式;
(2)判断函数g(x)的单调性并用定义证明;
(3)问x为何值时有f(x)≤g(x).

解:(1)由题易得f(x)=x2 ,g(x)=x-2
(2)g(x)在(0,+∞)上为减函数,在(-∞,0)上为增函数
证明:任取x1<x2<0,有
∵x1+x2<0,x2-x1>0,x12x22>0
∴g(x1)-g(x2)<0
∴g(x)在(0,+∞)上为增函数.
任取0<x1<x2,有
∵x2+x1>0,x2-x1>0,x12x22>0
∴g(x1)>g(x2
∴g(x)在(0,+∞)上是减函数.
(3)当x>1或x<1时,f(x)≤g(x),证明如下
由(1),两函数都是偶函数,先研究x>0时满足f(x)≤g(x)的x的取值范围.
令x2 =x-2,解得x=1,又f(x)=x2 在(0,+∞)上是增函数,g(x)=x-2在(0,+∞)上是减函数,故可得f(x)≤g(x)的x的取值范围是x≤1
由两函数的解析式知,此两函数都是偶函数,故当x<0时,f(x)≤g(x)的x的取值范围是x≥-1
综上当-1≤x≤1时,f(x)≤g(x)
分析:(1)求函数f(x),g(x)的解析式,由于已知两函数是幂函数,故可用待定系数法设出两函数的解析式,代入点的坐标求出函数的解析式.
(2)由定义进行证明即可;
由于两个函数在第一象限一个是减函数一个是增函数,故可令两者相等,解出它们的交点坐标,再由函数的单调性得出f(x)≤g(x)的解集,由于两函数都是偶函数,可由对称性得出函数在(-∞,0)上的解集,取两者的并集即得不等式f(x)≤g(x)的解集,即得所求的x的取值范围.
点评:本题考查幂函数单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,且能根据其性质进行运算,本题考查到了函数的单调性的证明方法定义法,要注意证明的步骤
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年甘肃省武威一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知点在幂函数f(x)的图象上,则f(x)是( )
A.是偶函数
B.是奇函数
C.是非奇非偶函数
D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省芜湖一中高一(上)期中数学试卷(解析版) 题型:选择题

已知点在幂函数f(x)的图象上,则f(x)的表达式为( )
A.
B.
C.f(x)=x2
D.f(x)=x-2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省武威一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知点在幂函数f(x)的图象上,则f(x)是( )
A.是偶函数
B.是奇函数
C.是非奇非偶函数
D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市人大附中高一(上)模块数学试卷(必修1)(解析版) 题型:解答题

已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上.
(1)求函数f(x),g(x)的解析式;
(2)判断函数g(x)的单调性并用定义证明;
(3)问x为何值时有f(x)≤g(x).

查看答案和解析>>

同步练习册答案