精英家教网 > 高中数学 > 题目详情
20.(1)设x,y,z∈(0,+∞),a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,求证:a,b,c三数中至少有一个不小于2;
(2)已知a,b,c是△ABC的三条边,求证:$\frac{a+b}{1+a+b}$>$\frac{c}{1+c}$.

分析 (1)假设a,b,c三数都小于2,则x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$<6,再结合基本不等式,引出矛盾,即可得出结论;
(2)运用分析法证明,运用不等式的性质和三角形的三边的关系,即可得证.

解答 证明:(1)假设a,b,c三数都小于2,则x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$<6.
∵x,y,z均大于0,
∴x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$=x+$\frac{1}{x}$+y+$\frac{1}{y}$+z+$\frac{1}{z}$≥2+2+2=6,矛盾.
∴a,b,c三数中至少有一个不小于2.
(2)要 证$\frac{a+b}{1+a+b}$>$\frac{c}{1+c}$成立,
只需证1-$\frac{1}{1+a+b}$>1-$\frac{1}{1+c}$
只需证-$\frac{1}{1+a+b}$>-$\frac{1}{1+c}$,
只需证-$\frac{1}{1+a+b}$<$\frac{1}{1+c}$只需证 1+c<1+a+b,只需证c<a+b
∵a,b,c是△ABC的三条边∴c<a+b成立,原不等式成立

点评 本题考查不等式的证明,考查分析法与反证法的运用,注意运用分析法证明,结合不等式的性质和三角形的三边关系,用反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的图象与两坐标轴所围成图形的面积;
(2)若直线x=-t(0<t<1)把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,b=3,c=$\sqrt{7}$,则△ABC的面积是(  )
A.2B.2$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=ekx+b(e为自然对数的底数,k、b为实常数),若该食品在0℃的保鲜时间为120小时,在22℃的保鲜时间是30小时,则该食品在33℃的保鲜时间是15小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(2x)>2x的解集为(  )
A.(-∞,1)B.(-∞,0)C.(0,∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法
①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;
②设有一个回归方程$\hat y=3-5x$,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程$\hat y=\hat bx+\hat a$必过点$(\overline x,\overline y)$;
④在一个2×2列联表中,由计算得Χ2=13.079,则其两个变量间有关系的可能性是小于90%.
独立性检验临界值表
P(Χ2≥k)0.050.0100.0050.001
K3.8416.6357.87910.828
其中错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现有甲、乙两个投资项目,对甲项目投资十万元,据对市场120份样本数据统计,年利润分布如表:
年利润1.2万元1.0万元0.9万元
频数206040
对乙项目投资十万元,年利润与产品质量抽查的合格次数有关,在每次抽查中,产品合格的概率均为$\frac{1}{3}$,在一年之内要进行2次独立的抽查,在这2次抽查中产品合格的次数与对应的利润如表:
合格次数2次1次0次
年利润1.3万元1.1万元0.6万元
记随机变量X,Y分别表示对甲、乙两个项目各投资十万元的年利润,
(1)求X>Y的概率;
(2)某商人打算对甲或乙项目投资十万元,判断那个项目更具有投资价值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知O、A、B是平面上的三点,直线AB上有一点C,满足:2$\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{0}$.
(1)用向量$\overrightarrow{OA}$,$\overrightarrow{OB}$表示向量$\overrightarrow{OC}$;
(2)若|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为$\frac{π}{3}$,求|$\overrightarrow{OC}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB是圆O的直径,PB是圆O的切线,过A点作AE∥OP交圆O于E点,PA交圆O于点F,连接PE.
(Ⅰ)求证:PE是圆O的切线;
(Ⅱ)设AO=3,PB=4,求PF的长.

查看答案和解析>>

同步练习册答案