精英家教网 > 高中数学 > 题目详情
13.不等式2x2-x-3>0的解集为(  )
A.{x|x<2或x>3}B.{x|x<-1或x>3}C.{x|x<-1或x>$\frac{3}{2}\}$D.{x|x<1或x>$\frac{3}{2}\}$

分析 把不等式化为(2x-3)(x+1)>0,求出不等式的解集即可.

解答 解:不等式2x2-x-3>0可化为
(2x-3)(x+1)>0,
解得x<-1或x>$\frac{3}{2}$,
∴该不等式的解集为{x|x<-1或x>$\frac{3}{2}$}.
故选:C.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{a•{2}^{x}+b+1}{{2}^{x}+1}$是定义域在R上的奇函数,且f(2)=$\frac{6}{5}$.
(1)求实数a、b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)解不等式:f(log${\;}_{\frac{1}{2}}$(2x-2)]+f[log2(1-$\frac{1}{2}$x)]≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={0,2,4,6},B={x∈N|2x<33},则集合A∩B的子集个数为(  )
A.8B.7C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}y≤1\\ y≥2x-1\\ x+y≥-4.\end{array}\right.$如果目标函数z=y-x的最小值为(  )
A.-2B.-4C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某化工厂拟建一个下部为圆柱,上部为半球的容器(如图,圆柱高为h,半径为r,不计厚度,单位:米),按计划容积为72π立方米,且h≥2r,假设其建造费用仅与表面积有关(圆柱底部不计),已知圆柱部分每平方米的费用为2千元,半球部分每平方米4千元,设该容器的建造费用为y千元.
(Ⅰ)求y关于r的函数关系,并求其定义域;
(Ⅱ)求建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足$\left\{\begin{array}{l}y≤1\\ y≥2x-1\\ x+y≥m\end{array}\right.$如果目标函数z=y-x的最小值为-2,则实数m等于(  )
A.0B.-2C.-4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图四棱锥E-ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC.
(Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两人射击比赛,两人平的概率是$\frac{1}{2}$,甲获胜的概率是$\frac{1}{3}$,则甲不输的概率为(  )
A.$\frac{2}{5}$B.$\frac{5}{6}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,三棱柱ABCA1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是(  )
A.CC1与B1E是异面直线B.AE与B1C1是异面直线,且AE⊥B1C1
C.AC⊥平面ABB1A1D.A1C1∥平面AB1E

查看答案和解析>>

同步练习册答案