精英家教网 > 高中数学 > 题目详情
11、已知y=f(x)是R上的奇函数,且x<0时,f(x)=x+2x;则当x>0时,f(x)=
x-2-x
分析:根据y=f(x)是R上的奇函数,当x>0时,f(x)=-f(-x)代入f(x)在x<0时的解析式,即可得到答案.
解答:解:∵y=f(x)是R上的奇函数,
当x>0时,f(x)=-f(-x)=-(-x)+2-x=x-2-x
故答案为x-2-x
点评:本题主要考查函数的单调性和奇偶性的综合运用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知y=f(x)是R上的偶函数,且f(x)在(-∞,0]上是增函数,若f(a)≥f(2),则a的取值范围是
[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是R上的偶函数,当x≥0 时,f(x)=x(x+1),当x<0 时,f(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是R上的可导函数,对于任意的正实数t,都有函数g(x)=f(x+t)-f(x)在其定义域内为减函数,则函数y=f(x)的图象可能为如图中(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是R上的增函数,且f(2m)<f(9-m),则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案