精英家教网 > 高中数学 > 题目详情
17.当x∈(0,+∞)时,不等式c2x2-(cx+1)lnx+cx≥0恒成立,则实数c的取值范围是[$\frac{1}{e}$,+∞).

分析 问题转化为x∈(0,+∞)时,(xc-lnx)(xc+1)≥0恒成立,故有$\left\{\begin{array}{l}{c≥\frac{lnx}{x}}\\{c≥-\frac{1}{x}}\end{array}\right.$或$\left\{\begin{array}{l}{c≤\frac{lnx}{x}}\\{c≤-\frac{1}{x}}\end{array}\right.$恒成立,令f(x)=$\frac{lnx}{x}$,求出f(x)的最大值,从而求出c的范围即可.

解答 解:当x∈(0,+∞)时,不等式c2x2-(cx+1)lnx+cx≥0恒成立,
即x∈(0,+∞)时,(xc-lnx)(xc+1)≥0恒成立,
即x∈(0,+∞)时,$\left\{\begin{array}{l}{c≥\frac{lnx}{x}}\\{c≥-\frac{1}{x}}\end{array}\right.$或$\left\{\begin{array}{l}{c≤\frac{lnx}{x}}\\{c≤-\frac{1}{x}}\end{array}\right.$,
令f(x)=$\frac{lnx}{x}$,f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)>0,解得:0<x<e,
令f′(x)<0,解得:x>e,
∴f(x)在(0,e)递增,在(e,+∞)递减,
∴f(x)max=f(e)=$\frac{1}{e}$,而y=-$\frac{1}{x}$<0,
故c≥$\frac{1}{e}$,
故答案为:[$\frac{1}{e}$,+∞).

点评 本题考查了函数恒成问题,考查函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若幂函数f(x)=(m2-m-1)x1-m是偶函数,则实数m=(  )
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(理)宜黄高速公路连接宜昌、武汉、黄石三市,全长约350公里,是湖北省大三角经济主骨架的干线公路之一.若某汽车从进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶,已知该汽车每小时的运输成本由固定部分和可变部分组成,固定部分为200元,可变部分与速度v(千米/时)的平方成正比(比例系数记为k).当汽车以最快速度行驶时,每小时的运输成本为488元.若使汽车的全程运输成本最低,其速度为100千米/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,A,B,C所对的边分别是a,b,c,A=$\frac{2π}{3}$,且bcosC=3ccosB,则$\frac{b}{c}$的值为(  )
A.$\frac{\sqrt{13}-1}{2}$B.$\frac{1+\sqrt{13}}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}满足a1=4,a4+a6=16,则它的前10项和S10=(  )
A.138B.85C.23D.135

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{1+\frac{1}{x}(x>1)}\\{{x}^{2}+1(-1≤x≤1)}\\{2x+3(x<-1)}\end{array}\right.$.
(1)求f{f[f(-2)]}的值;
(2)若f(a)=$\frac{3}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各式正确的是(  )
(1)($\frac{cosx}{x}$)′=$\frac{-sinx}{{x}^{2}}$ 
(2)[(x2+x+1)ex]′=(2x+1)ex
(3)($\frac{2x}{{x}^{2}+1}$)′=$\frac{2-2{x}^{2}}{({x}^{2}+1)^{2}}$
(4)(e3x+1)′=3e3x+1
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等比数列{an}中,${a_1}=1,q=\frac{1}{2},{a_n}=\frac{1}{64}$,则项数n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=lg(3+x)+lg(3-x)
(1)求函数f(x)的定义域
(2)求证:f(x)是偶函数.

查看答案和解析>>

同步练习册答案