精英家教网 > 高中数学 > 题目详情
(2012•北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
分析:(1)D,E分别为AC,AB的中点,易证DE∥平面A1CB;
(2)由题意可证DE⊥平面A1DC,从而有DE⊥A1F,又A1F⊥CD,可证A1F⊥平面BCDE,问题解决;
(3)取A1C,A1B的中点P,Q,则PQ∥BC,平面DEQ即为平面DEP,由DE⊥平面,P是等腰三角形DA1C底边A1C的中点,可证A1C⊥平面DEP,从而A1C⊥平面DEQ.
解答:解:(1)∵D,E分别为AC,AB的中点,
∴DE∥BC,又DE?平面A1CB,
∴DE∥平面A1CB,
(2)由已知得AC⊥BC且DE∥BC,
∴DE⊥AC,
∴DE⊥A1D,又DE⊥CD,
∴DE⊥平面A1DC,而A1F?平面A1DC,
∴DE⊥A1F,又A1F⊥CD,
∴A1F⊥平面BCDE,
∴A1F⊥BE.
(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.
∵DE∥BC,
∴DE∥PQ.
∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,
∴DE⊥A1C,
又∵P是等腰三角形DA1C底边A1C的中点,
∴A1C⊥DP,
∴A1C⊥平面DEP,从而A1C⊥平面DEQ,
故线段A1B上存在点Q,使A1C⊥平面DEQ
点评:本题考查直线与平面平行的判定,直线与平面垂直的判定与性质,考查学生的分析推理证明与逻辑思维能力,综合性强,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE;
(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

 [2012·北京卷] 如图1-9(1),在Rt△ABC中,∠C=90°,DE分别为ACAB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1FCD,如图1-9(2).

(1)求证:DE∥平面A1CB

(2)求证:A1FBE

(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

图1-9

查看答案和解析>>

科目:高中数学 来源: 题型:

2012·北京卷] 如图1-9(1),在Rt△ABC中,∠C=90°,DE分别为ACAB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1FCD,如图1-9(2).

(1)求证:DE∥平面A1CB

(2)求证:A1FBE

(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

图1-9

查看答案和解析>>

同步练习册答案