精英家教网 > 高中数学 > 题目详情
(2013•湖南)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为
12
12
分析:根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化简得a2+4b2+9c2≥12,由此可得当且仅当a=2,b=1,c=
2
3
时,a2+4b2+9c2的最小值为12.
解答:解:∵a+2b+3c=6,
∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]
化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2
∴a2+4b2+9c2≥12,
当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=
2
3
时等号成立
由此可得:当且仅当a=2,b=1,c=
2
3
时,a2+4b2+9c2的最小值为12
故答案为:12
点评:本题给出等式a+2b+3c=6,求式子a2+4b2+9c2的最小值.着重考查了运用柯西不等式求最值与柯西不等式的等号成立的条件等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)已知函数f(x)=sin(x-
π
6
)+cos(x-
π
3
)
g(x)=2sin2
x
2

(I)若α是第一象限角,且f(α)=
3
3
5
,求g(α)的值;
(II)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(?UA)∩B=
{6,8}
{6,8}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为
1
2
,则
AD
AB
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)已知
a
b
是单位向量,
a
b
=0.若向量
c
满足|
c
-
a
-
b
|=1,则|
c
|的最大值为(  )

查看答案和解析>>

同步练习册答案