【题目】某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x﹣ x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时f(x)>0,且f( )=1;
(1)证明:y=f(x)是(x>0)上的减函数;
(2)解不等式f(x﹣3)>f( )﹣2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的可导函数f(x)满足f(1)=1,且2f′(x)>1,当x∈[﹣ , ]时,不等式f(2cosx)> ﹣2sin2 的解集为( )
A.( , )
B.(﹣ , )
C.(0, )
D.(﹣ , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c为△ABC的内角A,B,C的对边,满足 = ,函数f(x)=sinωx(ω>0)在区间[0, ]上单调递增,在区间[ ,π]上单调递减.
(1)证明:b+c=2a;
(2)若f( )=cos A,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)= (a∈R)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求实数m的取值范围;
(2)设函数g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一个零点,求实数b取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和. 如:1= + + ,1= + + + ,1= + + + + ,…依此类推可得:1= + + + + + + + + + + + + ,其中m≤n,m,n∈N* . 设1≤x≤m,1≤y≤n,则 的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 是两条不重合的直线, 是三个两两不重合的平面,给出下列四个命题:
①若 , ,则 ;②若 , ,则 ;
③若 , , ,则 ;④若 是异面直线, , , ,则 .
其中真命题是( )
A.①和④
B.①和③
C.③和④
D.①和②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,﹣ <φ< )的图象如图所示,为得到的g(x)=Acosωx的图象,可以将f(x)的图象( )
A.向左平移
B.向左平移
C.向右平移
D.向右平移
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com