精英家教网 > 高中数学 > 题目详情
(1)已知角α终边上一点P(-4a,3a),a≠0,求
cos(
π
2
+α)sin3(-π-α)
cos(
11π
2
-α)sin2(
2
+α)
的值.
(2)已知tanα=3,求
1
2sinαcosα+cos2α
的值.
考点:同角三角函数基本关系的运用,任意角的三角函数的定义
专题:三角函数的求值
分析:(1)利用任意角的三角函数定义,根据P坐标求出tanα与sinα的值,原式利用诱导公式化简,约分后将各自的值代入计算即可求出值;
(2)原式分子“1”利用同角三函数间基本关系化简,分子分母除以cos2α,利用同角三角函数间基本关系弦化切后,将tanα的值代入计算即可求出值.
解答: 解:(1)∵角α终边上一点P(-4a,3a),a≠0,
∴tanα=
y
x
=-
3
4
,sinα=
y
r
=
3a
|5a|

∴原式=
-sinαsin3α
-sinαcos2α
=tan2αsinα=
27
80
(a>0)
-
27
80
(a<0)

(2)∵tanα=3,
∴原式=
sin2α+cos2α
2sinαcosα+cos2α
=
tan2α+1
2tanα+1
=
9+1
6+1
=
10
7
点评:此题考查了同角三角函数间基本关系的运用,以及任意角的三角函数定义,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某市对个体户自主创业给予小额贷款补贴,每户贷款额为2万元,贷款期限有6个月、12个月、18个月、24个月、36个月五种,这五种贷款期限政府分别需要补助200元、300元、300元、400元、400元,现从2013年享受此项政策的个体户中抽取了100户进行调查统计,其贷款期限的频数如下表:
贷款期限 6个月 12个月 18个月 24个月 36个月
频数 20 a b 10 10
已知贷款期限为18个月的频率为0.2.
(1)计算a,b的值;
(2)以上表各种贷款期限的频率作为2014年个体户选择各种贷款期限的概率.某小区2014年共有3户准备享受此项政策,计算其中恰有两户选择贷款期限为12个月的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个顶点,|AB|=
5
,直线AB的斜率为-
1
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l平行与AB,并与椭圆相交于C、D两点,求△OCD的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的三视图和直观图如图所示,其中M,G分别是AB,DF的中点.

(Ⅰ)求该多面体的体积与表面积;
(Ⅱ)请在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn,且S2=
3
2
a2-1,S3=
3
2
a3-1.
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{
1
dn
}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=
1
2
.过F1的直线l交椭圆与A、B两点,且△ABF2的周长为8.
(1)求椭圆E的方程;
(2)当△ABF2的面积为3时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x-sin2x+2
3
sinxcosx.
(1)当x∈[0,
π
2
]时,求f(x)的值域;
(2)△ABC的内角A,B,C的对边分别为a,b,c,sin(A+B)=2sin(B+C),
b
a
=
3
,求A以及f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
3
sinx),
b
=(cos2x,-cosx),x∈R,设函数f(x)=
a
b

(Ⅰ)求f(x)的最小正周期及在区间[0,π]上的单调区间;
(Ⅱ)若f(θ)=1,求cos2
π
2
-θ)+
3
sinθcosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若①a≤b≤9,②a+b>9,则同时满足①②的正整数a,b有
 
组.

查看答案和解析>>

同步练习册答案