精英家教网 > 高中数学 > 题目详情
2.已知f(x)为R上的偶函数,当x>0时,f(x)=log6x,则f(-4)+f(9)=2.

分析 根据函数奇偶性的性质进行转化求解即可.

解答 解:∵f(x)为R上的偶函数,当x>0时,f(x)=log6x,
∴f(-4)+f(9)=f(4)+f(9)=log64+log69=log6(4×9)=log636=2,
故答案为:2.

点评 本题主要考查函数值的计算,根据函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={x∈Z|(x+2)(x-1)<0},B={-2,-1},那么A∪B等于(  )
A.{-1}B.{-2,-1}C.{-2,-1,0}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.(t$为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ
(1)求圆C的直角坐标方程;
(2)若点P(1,2),设圆C与直线l交于点A、B,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{3x}{a}-2{x^2}+lnx$,其中a为常数.
(1)若a=1,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,2]上为单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,梯形A1B1C1D1是一平面图形ABCD的直观图(斜二测),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,则原平面图形ABCD的面积是(  )
A.14.B.7C.$14\sqrt{2}$D.$7\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数),已知该食品在0℃的保鲜时间是192小时,在33℃的保鲜时间是24小时
(1)求k的值
(2)该食品在11℃和22℃的保鲜时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某中学有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人组成一个样本.将学生按一、二、三年级依次同一编号为1,2,…,270.如果抽得号码有如下四种情况:
①5,9,100,107,111,121,180,195,200,265;
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,60,90,119,146,173,200,227,254.
则其中可能由分层抽样、而不可能由系统抽样得到的样本是(  )
A.①②B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.棱台的两底面面积为S1、S2,中截面(过各棱中点的面积)面积为S0,那么(  )
A.$2\sqrt{S_0}=\sqrt{S_1}+\sqrt{S_2}$B.${S_0}=\sqrt{{S_1}{S_2}}$C.2S0=S1+S2D.S02=2S1S2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边是a,b,c,已知a=$\sqrt{3}$c,cos2B=$\frac{1}{2}$,B为钝角.
(1)求B;
(2)若b=$\sqrt{7}$,求AC边上的高.

查看答案和解析>>

同步练习册答案