精英家教网 > 高中数学 > 题目详情
如图,棱柱ABCD-A1B1C1D1的所有棱长都为2,AC∩BD=O,侧棱AA1与底面ABCD所成的角为60°,A1O⊥平面ABCD,F为DC1的中点,
(1)证明:BD⊥AA1
(2)证明:OF∥平面BCC1B1
(3)求二面角D-AA1-C的余弦值.
解:(1)∵棱柱ABCD-A1B1C1D1的所有棱长都为2,
∴四边形ABCD为菱形,
∴BD⊥AC,
又A1O⊥平面ABCD,BD平面ABCD,
∴A1O⊥BD,
又∵AC∩A1O=O,AC、A1O平面A1ACC1
∴BD⊥平面A1ACC1
∵AA1平面A1ACC1
∴BD⊥AA1
(2)连接BC1,如图所示,
∵四边形ABCD为菱形,AC∩BD=O,
∴O是BD的中点,
又∵点F为DC1的中点,
∴在△DBC1中,OF∥BC1
∵OF平面BCC1B1,BC1平面BCC1B1
∴OF∥平面BCC1B1
(3)以O为坐标系的原点,分别以OA,OB,OA1所在直线
为x,y,z轴建立空间直角坐标系,如图,
∵侧棱AA1与底面ABCD所成的角为60°,A1O⊥平面ABCD,
∴∠A1AO=60°,在Rt△A1AO中,可得AO=1,
在Rt△AOB中,
∴A(1,0,0),
设平面AA1D的一个法向量为n1=(x1,y1,z1),


,令z1=1,则
又∵BD⊥平面A1ACC1
所以,平面A1ACC1的一个法向量为

∵二面角D-AA1-C的平面角为锐角,
故二面角D-AA1-C的余弦值是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,且∠A1AD=∠A1AB=60°.
①求证四棱锥A1-ABCD为正四棱锥;
②求侧面A1ABB1与截面B1BDD1的锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AC∩BD=O,侧棱AA1⊥BD,点F为DC1的中点.
(I) 证明:OF∥平面BCC1B1
(II)证明:平面DBC1⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.?
(1)证明:BD⊥AA1;?
(2)证明:平面AB1C∥平面DA1C1
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1CC1⊥平面ABCD,∠A1AC=60°
(1)求二面角D-A1A-C的大小.
(2)求点B1到平面A1ADD1的距离
(3)在直线CC1上是否存在P点,使BP∥平面DA1C1,若存在,求出点P的位置;若不存在,说出理由.

查看答案和解析>>

同步练习册答案