精英家教网 > 高中数学 > 题目详情
 是双曲线 上一点,分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上一点,满足,求的值.
(1) e=.  (2)λ=0或λ=-4.

试题分析:(1)点P(x0,y0)(x0≠±a)在双曲线=1上,有=1,        1分
由题意又有·,                       2分
可得a2=5b2,c2=a2+b2=6b2,则e=.                  4分
(2)联立,得4x2-10cx+35b2=0,设A(x1,y1),B(x2,y2)
①                          6分
,即
又C为双曲线上一点,即-5=5b2,有(λx1+x2)2-5(λy1+y2)2=5b2  。7分
化简得:λ2(-5)+(-5)+2λ(x1x2-5y1y2)=5b2             。9分
又A(x1,y1),B(x2,y2)在双曲线上,所以-5=5b2-5=5b2
由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2
得λ2+4λ=0,解出λ=0或λ=-4.                   12分
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题利用双曲线的标准方程,确定得到离心率。本题(II)在利用韦达定理的基础上,又利于点在曲线上得到λ的方程,使问题得解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB

(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于该半圆所在的平面,且

(Ⅰ)求证:
(Ⅱ)设平面与半圆弧的另一个交点为
①试证:
②若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,中,侧棱与底面垂直,,,点分别为的中点.

(1)证明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:
ACBD;     ②△ACD是等边三角形;
AB与平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=

(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为圆的直径,点在圆上,矩形所在的平面和圆所在的平面互相垂直,且.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图正四棱锥的底面边长为,高,点在高上,且,记过点的球的半径为,则函数的大致图像是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为4的正方形与正三角形所在的平面相互垂直,且
分别为中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案