精英家教网 > 高中数学 > 题目详情
20.A为三角形ABC的一个内角.若sinA+cosA=$\frac{12}{25}$,2sinBcosC=sinA,则这个三角形的形状不可能为(  )
A.锐角三角形B.钝角三角形
C.等腰且钝角三角形D.等腰三角形

分析 将已知式平方并利用sin2A+cos2A=1,算出sinAcosA=-$\frac{481}{1250}$<0,结合A∈(0,π)得到A为钝角,由此可得△ABC是钝角三角形.

解答 解:∵sinA+cosA=$\frac{12}{25}$,
∴两边平方得(sinA+cosA)2=$\frac{144}{625}$,即sin2A+2sinAcosA+cos2A=$\frac{144}{625}$,
∵sin2A+cos2A=1,
∴1+2sinAcosA=$\frac{144}{625}\frac{1}{2}$,解得sinAcosA=$\frac{1}{2}$($\frac{144}{625}$-1)=-$\frac{481}{1250}$<0,
∵A∈(0,π)且sinAcosA<0,
∴A∈($\frac{π}{2}$,π),可得△ABC是钝角三角形
故选:A.

点评 本题给出三角形的内角A的正弦、余弦的和,判断三角形的形状.着重考查了同角三角函数的基本关系、三角形的形状判断等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cos2(x-$\frac{π}{6}$)-sin2x,其中x∈R.
(1)求函数f(x)的值域;
(2)已知α为第二象限角,且f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,求$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足|x|+|y|≤1,则|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn=2n-1,数列{bn}满足b1=0,bn+1-bn=2n(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)若Cn=$\frac{{a}_{n}•{b}_{n}}{n}$,求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数y=$\frac{3x+27}{x-3}$在区间(a,b)上的值或是(9,+∞),则logab=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l1,l2的方程分别是l1:A1x+B1y+C1=0(A1,B2不同时为0),l2:A2x+B2y+C2=0(A1、B2不同时为0),且A1A2+B1B2=0,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.复平面上复数z对应的点Z在曲线|z-1|=2上,求复数2z-1-i在复平面上对应点的轨迹方程.(化成直角坐标方程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设抛物线y2=2px(p>0)的焦点为F,其准线和x轴的交点为C,经过点F的直线l与抛物线相交于A、B两点,若CB⊥AB,则|AF|-|BF|=(  )
A.$\frac{P}{2}$B.-$\frac{P}{2}$C.2PD.-2P

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{\sqrt{2-x}}$+(x-1)0的定义域是{x|x<2且x≠1}.

查看答案和解析>>

同步练习册答案