科目:高中数学 来源: 题型:044
(甲)如图,正三棱柱ABC-A1B1C1的底面边长为a,点M在边BC上,DAMC1是以点M为直角顶点的等腰直角三角形.
![]()
(1)求证:点M为边BC的中点;
(2)求点C到平面AMC1的距离;
(3)求二面角M-AC1-C的大小.
(乙)如图,直三棱柱ABC-A1B1C1中,底面是以ÐABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
![]()
(1)求直线BE与A1C所成的角;
(2)在线段AA1上是否存在点F,使CF^平面B1DF,若存在,求出
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:江苏省常州二中2008高考一轮复习综合测试4、数学(文科) 题型:044
如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,AC=1,点C到AB1的距离为CE=
,D为AB的中点.
(1)求证:AB1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
(3)求二面角E-AC-D的大小.
查看答案和解析>>
科目:高中数学 来源:江苏省怀仁中学2009届高三第一学期期末模拟试题数学试卷 题型:044
如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,AC=1,C点到AB1的距离为CE=
,D为AB的中点.
(1)求证:AB1⊥平面CED;
(2)求异面直线AB1与CD之间的距离
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=900,AC=1,C点到AB1的距离为CE=
,D为AB的中点.
(1)求证:AB??1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
(3)求二面角B1—AC—B的平面角.
查看答案和解析>>
科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题
已知直三棱柱
中,
,
,
是
和
的交点, 若
.
(1)求
的长; (2)求点
到平面
的距离;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACC
A
为正方形,
AC=3
第二问中,利用面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为![]()
解法一: (1)连AC
交A
C于E, 易证ACC
A
为正方形,
AC=3
…………… 5分
(2)在面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
… 8分
(3) 易得AC![]()
面A
CB,
过E作EH
A
B于H, 连HC
,
则HC![]()
A
B
![]()
C
HE为二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小为
……… 12分
解法二: (1)分别以直线C
B、CC
、C
A为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h) ……… 4分
![]()
·
=0,
h=3
(2)设平面A
BC
得法向量
=(a, b, c),则可求得
=(3, 4, 0) (令a=3)
点A到平面A
BC
的距离为H=|
|=
……… 8分
(3) 设平面A
BC的法向量为
=(x, y, z),则可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
满足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小为![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com