精英家教网 > 高中数学 > 题目详情
(2012•惠州模拟)在△ABC中,角A、B、C所对的边分别为a、b、c,又cosA=
4
5

(1)求cos2
A
2
+cos2A+
1
2
的值.
(2)若b=2,△ABC的面积S=3,求a的值.
分析:(1)利用二倍角的余弦函数公式化简所求式子的前两项,将cosA的值代入即可求出值;
(2)由cosA的值及A为三角形的内角,利用同角三角函数间的基本关系求出sinA的值,再由S及b的值,利用三角形的面积公式求出c的值,再由b,c及cosA的值,利用余弦定理即可求出a的值.
解答:解:(1)∵cosA=
4
5

∴cos2
A
2
+cos2A+
1
2
=
1
2
(1+cosA)+2cos2A-1+
1
2

=
1
2
cosA+2cos2A=
1
2
×
4
5
+2×
16
25
=
42
25

(2)∵cosA=
4
5
,且A为三角形的内角,
∴sinA=
1-cos2A
=
3
5
,又S=3,b=2,
∴S=
1
2
bc•sinA=
3
5
c=3,解得:c=5,
由余弦定理a2=b2+c2-2bccosA=4+25-2×2×5×
4
5
=13,
∴a=
13
点评:此题考查了二倍角的余弦函数公式,同角三角函数间的基本关系,三角形的面积公式,以及余弦定理,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知实数4,m,9构成一个等比数列,则圆锥曲线
x2
m
+y2=1
的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知椭圆C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
6
3
,且经过点(
3
2
1
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)计算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步练习册答案