精英家教网 > 高中数学 > 题目详情
18.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,点($\sqrt{2}$,$\frac{1}{2}$)在椭圆上.
(1)求椭圆M的标准方程;
(2)斜率为1的直线l,交椭圆M于不同的点A,B两点,若以线段AB为直径的圆经过原点O.求直线l的方程.

分析 (1)根据斜率公式以及点在椭圆上,即可求出a2=3,b2=$\frac{3}{4}$,得到椭圆的方程,
(2)设直线l的方程为y=x+m,将y=x+m代入x2+4y2=3,并整理得5x2+8xm+4m2-3=0,根据韦达定理以及由题意可得$\overrightarrow{OA}⊥\overrightarrow{OB}$,即可得到关于m的方程,解得即可.

解答 解:(1)由e2=$\frac{3}{4}$=1-$\frac{{b}^{2}}{{a}^{2}}$,
∴a=2b,
又点($\sqrt{2}$,$\frac{1}{2}$)在椭圆上,
∴$\frac{2}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$=1,
∴a2=3,b2=$\frac{3}{4}$,
∴椭圆的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{\frac{3}{4}}$=1,
(2)设直线l的方程为y=x+m,将y=x+m代入x2+4y2=3,并整理得5x2+8xm+4m2-3=0,
则△=(8m)2-20(4m2-3)>0,解得-$\frac{\sqrt{15}}{2}$<m<$\frac{\sqrt{15}}{2}$,
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{8m}{5}$,x1x2=$\frac{4{m}^{2}-3}{5}$,
∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2
由题意可得$\overrightarrow{OA}⊥\overrightarrow{OB}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
∴x1x2+y1y2=0,
∴2x1x2+m(x1+x2)+m2=0,
∴2•$\frac{4{m}^{2}-3}{5}$+m•(-$\frac{8m}{5}$)+m2=0,
解得m=±$\frac{\sqrt{30}}{5}$,此时m(-$\frac{\sqrt{15}}{2}$,$\frac{\sqrt{15}}{2}$),
∴直线l的方程为y=x±$\frac{\sqrt{30}}{5}$

点评 本题考查椭圆的标准方程的求法,考查直线方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量垂直的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,且a1=a,(an+1)(an+1+1)=6(Sn+n),n∈N*
(1)求数列{an}的通项公式;
(2)若对于?n∈N*,都有Sn≤n(3n+1)成立,求实数a取值范围;
(3)当a=2时,将数列{an}中的部分项按原来的顺序构成数列{bn},且b1=a2,证明:存在无数个满足条件的无穷等比数列{bn}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线2x-y+2=0与直线y=kx+1平行,则实数k的值为(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“-1≤x≤2”是“x2-x-2=0”的(  )
A.充分不必要条件B.必要不充分条件
C.冲要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=(x2-3)ex的单调减区间为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$=(-3,2),$\overrightarrow{b}$=(-1,-2).求
(1)($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$);
(2)|$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a=0.78,b=80.7,c=log0.78,则a、b、c的大小关系是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{{e}^{2x}}{x}$的导函数为(  )
A.f′(x)=2e2xB.f′(x)=$\frac{(2x-1){e}^{2x}}{{x}^{2}}$C.f′(x)=$\frac{2{e}^{2x}}{x}$D.f′(x)=$\frac{(x-1){e}^{2x}}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$f(x)=\sqrt{x({x+1})}$,$g(x)=\frac{1}{{\sqrt{x}}}$,则f(x)•g(x)=$\sqrt{x+1}$(x>0)..

查看答案和解析>>

同步练习册答案