精英家教网 > 高中数学 > 题目详情
4.设集合A={y|y=sinx},B={y|y=2x},则A∩B=(  )
A.(-1,0)B.[0,1)C.(0,1]D.(0,1)

分析 求出函数的值域,然后求解交集即可.

解答 解:集合A={y|y=sinx}={y|-1≤y≤1},
B={y|y=2x}={y|y>0},
则A∩B={y|0<y≤1}.
故选:C.

点评 本题考查函数的值域,交集的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知角α终边上一点($\frac{5}{13}$,-$\frac{12}{13}$),那么sinα=-$\frac{12}{13}$,cosα=$\frac{5}{13}$,tanα=-$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设双曲线中心是坐标原点,实轴在y轴上,离心率为$\frac{\sqrt{5}}{2}$,已知点P(0,5)到双曲线的最近距离是2,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线E:y=2x2的焦点为F,E上有四点A,B,C,D满足$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$+$\overrightarrow{FD}$=$\overrightarrow{0}$,则|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+|$\overrightarrow{FC}$|+|$\overrightarrow{FD}$|=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex,g(x)=bx+1(a,b∈R),若f(x)≥g(x)对任意的x∈R恒成立,求b的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x+1)为R上的奇函数,当x>1时,f(x)=2x-6x,则f(-1)+f(1)=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A、B、C是△ABC的三个内角,求证:
(1)cos(2A+B+C)=-cosA;
(2)sin$\frac{B+C}{2}$=cos$\frac{A}{2}$;
(3)tan$\frac{A+B}{4}$=-tan$\frac{3π+C}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)的导函数为f′(x),且满足f(x)=x2+3xf′(2)+lnx,则f′(2)=-$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动.
(Ⅰ)求线段AB的中点轨迹方程M;
(Ⅱ)求轨迹M上的点到点P(5,4)的最小距离.

查看答案和解析>>

同步练习册答案