精英家教网 > 高中数学 > 题目详情

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.

(Ⅰ)求双曲线M的方程;

(Ⅱ)设直线 与双曲线M相交于A、B两点,O是原点.

① 当为何值时,使得?

② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

(Ⅰ)双曲线M的方程为.

(Ⅱ)当时,使得

②当时,存在实数,使A、B两点关于直线对称


解析:

(Ⅰ)易知,椭圆的半焦距为:

 又抛物线的准线为:.    ----------2分

设双曲线M的方程为,依题意有

,又.

∴双曲线M的方程为. ----------4分

(Ⅱ)设直线与双曲线M的交点为两点

联立方程组 消去y得  ,-------5分

两点的横坐标是上述方程的两个不同实根, ∴

从而有.   ----------7分

.

,则有 ,即 .

∴当时,使得.    ----------10分

② 若存在实数,使A、B两点关于直线对称,则必有

因此,当m=0时,不存在满足条件的k

时,由 得

  

∵A、B中点在直线上,

,代入上式得

,又, ∴----------13分

代入并注意到,得 .

∴当时,存在实数,使A、B两点关于直线对称----------14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线M的中心在原点,并以椭圆
x2
25
+
y2
13
=1的焦点为焦点,以抛物线y2=-2
3
x的准线为右准线.
(1)求双曲线M的方程;
(2)设直线l:y=kx+3与双曲线M相交于A、B两点,O是原点.求k值,使
OA
OB
=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线M的中心在原点,并以椭圆
x2
25
+
y2
13
=1的焦点为焦点,以抛物线y2=-2
3
x的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线l:y=kx+3 与双曲线M相交于A、B两点,O是原点.
①当k为何值时,使得
OA
OB
=0?
②是否存在这样的实数k,使A、B两点关于直线y=mx+12对称?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.

(Ⅰ)求双曲线M的方程;

(Ⅱ)设直线 与双曲线M相交于A、B两点,O是原点.

① 当为何值时,使得?

② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线M的中心在原点,并以椭圆数学公式+数学公式=1的焦点为焦点,以抛物线y2=-2数学公式x的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线l:y=kx+3 与双曲线M相交于A、B两点,O是原点.
①当k为何值时,使得数学公式数学公式=0?
②是否存在这样的实数k,使A、B两点关于直线y=mx+12对称?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案