精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意,总存在,使得.
(1)f(x)在(1,2)单调递减函数,f(x)在(2,+∞)单调递增函数;(2)证明过程详见解析.

试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、不等式等基础知识,考查函数思想、分类讨论思想,考查综合分析和解决问题的能力.第一问,先对求导,而分子还比较复杂,所以对分子进行二次求导,导数非负,所以分子所对函数为增函数,而,所以在,在,所以为负值,在上为正值,所以得出的单调性;第二问,先对已知进行转化,转化为恒成立,而,即转化为恒成立,再次转化为,通过求导判断函数的单调性,判断的正负.
试题解析:(1)       1分
,
是增函数,又                     3分
∴当时, ,则,是单调递减函数;
时, ,则,是单调递增函数.
综上知:单调递减函数,
单调递增函数                   6分
(2)对任意,总存在,使得恒成立
等价于恒成立,而,即证恒成立.等价于,
也就是证                               8分
            10分
单调递增函数,又
∴当时,,则
时,,则
综上可得:对任意,总存在,
使得.                               12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)设(其中的导函数),求的最大值;
(2)求证: 当时,有
(3)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数),其中
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中是实数).
(Ⅰ)求的单调区间;
(Ⅱ)若,且有两个极值点,求的取值范围.
(其中是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数),为常数),是实数集上的奇函数.
(1)求证:
(2)讨论关于的方程:的根的个数;
(3)设,证明:为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求函数的单调递减区间;
(II)若上恒成立,求实数的取值范围;
(III)过点作函数图像的切线,求切线方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,.
(Ⅰ)当时,求曲线处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是二次函数,不等式的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然数m,使得方程=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知可导函数的导函数满足,则不等式的解集是   

查看答案和解析>>

同步练习册答案