精英家教网 > 高中数学 > 题目详情
2.函数f(x)=sin(ωx+φ)(其中ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值为(  )
A.2,$\frac{π}{3}$B.2,-$\frac{π}{3}$C.4,$\frac{π}{3}$D.4,-$\frac{π}{3}$

分析 由图象易知$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,又T=$\frac{2π}{ω}$,可求得ω,再由ω•$\frac{π}{3}$+φ=π即可求得φ.

解答 解:∵$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π,又T=$\frac{2π}{ω}$,ω>0,
∴ω=2;
∴由ω•$\frac{π}{3}$+φ=π,即2•$\frac{π}{3}$+φ=π,解得φ=$\frac{π}{3}$.
故选:A.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,关键是通过看图得到$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$,继而可求ω,通过看图得到ω•$\frac{π}{3}$+φ=π,从而可求φ,考查学生读图能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinx+$\sqrt{3}$cosx.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,四边形ABCD为菱形,四边形CEFB为正方形,平面ABCD⊥平面CEFB,CE=1,∠BCD=60°,若二面角D-CE-F的大小为α,异面直线BC与AE所成角的大小为β,则(  )
A.tanα=$\sqrt{3}$,tanβ=$\frac{\sqrt{7}}{3}$B.tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\sqrt{3}$
C.tanα=$\frac{2\sqrt{3}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$D.tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)长轴长为10,离心率为e=$\frac{3}{5}$.设直线l过椭圆的右焦点,且斜率为$\frac{4}{5}$,与椭圆相交于不同的两点A,B.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求直线l的方程;
(Ⅲ)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.曲线y=sinx+ex在点(0,1)处的切线方程是y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既是偶函数又在区间(0,+∞)上是增函数的是(  )
A.y=-x2B.y=ex-e-xC.y=ln(|x|+1)D.y=x•sinx+cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD=1,PD⊥面ABCD,E为棱BC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求异面直线PB和DE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列四个命题:
(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2-8a<0且a>0;
(3)y=x2-2|x|-3的递增区间为[1,+∞)和[-1,0];
(4)y=1+x和y=$\sqrt{{{(1+x)}^2}}$表示相等函数.
其中结论是正确的命题的题号是(3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正四棱锥P-ABCD的侧棱与底面所成角为60°,M为PA中点,连接DM,则DM与平面PAC所成角的大小是45°.

查看答案和解析>>

同步练习册答案