精英家教网 > 高中数学 > 题目详情
设f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
(n∈N*),那么f(n+1)-f(n)等于(  )
A、
1
2n+1
B、
1
2n+2
C、
1
2n+1
+
1
2n+2
D、
1
2n+1
-
1
2n+2
分析:根据题中所给式子,求出f(n+1)和f(n),再两者相减,即得到f(n+1)-f(n)的结果.
解答:解:根据题中所给式子,得f(n+1)-f(n)
=
1
n+2
+
1
n+3
++
1
2n
+
1
2n+1
+
1
2n+2
-(
1
n+1
+
1
n+2
++
1
2n

=
1
2n+1
+
1
2n+2
-
1
n+1

=
1
2n+1
-
1
2n+2

故答案选D.
点评:此题主要考查数列递推式的求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(n)=
1
n+1
+
1
n+2
+…+
1
2n
(n∈N),则f(n+1)-f(n)=
1
2n+1
-
1
2n+2
1
2n+1
-
1
2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)=
1
n+1
+
2
n+2
+
1
n+3
+…+
1
2n
(n∈N*)
,那么f(n+1)-f(n)=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
-(
1
n+1
+
1
n+2
+…+
1
2n
)
=
1
2n+1
+
1
2n+2
-
1
n+1
=
1
2n+1
-
1
2n+2
1
2n+1
-
1
2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn=1+
1
2
+
1
3
+…+
1
n
,(n∈N*),设f (n)=S2n+1-Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式f(n)>[logm(m-1)]2-
11
20
[log(m-1)m]2
恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(n)=
1
n+1
+
2
n+2
+
1
n+3
+…+
1
2n
(n∈N*)
,那么f(n+1)-f(n)=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
-(
1
n+1
+
1
n+2
+…+
1
2n
)
=
1
2n+1
+
1
2n+2
-
1
n+1
=______.

查看答案和解析>>

同步练习册答案