精英家教网 > 高中数学 > 题目详情
过双曲线
x2
4
-
y2
3
=1
的左焦点F1的直线交双曲线的左支于A,B两点,右焦点F2,则|AF2|+|BF2|-|AB|的值是
8
8
分析:根据双曲线的标准方程可得:a=2,再由双曲线的定义可得:|AF2|-|AF1|=2a=4,|BF2|-|BF1|=2a=4,所以得到|AF2|+|BF2|-(|AF1|+|BF1|)=8,再根据A、B两点的位置特征得到答案.
解答:解:根据双曲线的标准方程
x2
4
-
y2
3
=1
可得:a=2,
由双曲线的定义可得:|AF2|-|AF1|=2a=4…①,|BF2|-|BF1|=2a=4…②,
所以①+②可得:|AF2|+|BF2|-(|AF1|+|BF1|)=8,
因为过双曲线的左焦点F1的直线交双曲线的左支于A,B两点,
所以|AF1|+|BF1|=|AB|,
所以|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=8.
故答案为:8.
点评:本题主要考查双曲线的定义与双曲线的标准方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点M(3,-1)且被点M平分的双曲线
x24
-y2=1
的弦所在直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
x2
4
-y2=1
有且只有一个公共点,这样的直线有3条;
④过双曲线x2-
y2
2
=1
的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线x2-
y2
2
=1
和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有
①②④
①②④
.(请写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
4
-
y2
5
=1
的右焦点F且与x轴垂直的直线与双曲线交于A,B两点,抛物线y2=2px过A,B两点,则p等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-y2=1的虚轴的上端点为B,过点B引直线l与双曲线的左支有两个不同的公共点,则直线l的斜率的取值范围是
1
2
2
2
1
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(2,-1)且被A平分的双曲线
x2
4
-y2=1
的弦所在的直线的方程为(  )

查看答案和解析>>

同步练习册答案