精英家教网 > 高中数学 > 题目详情

观察由归纳推理可得:若定义在R上的函数满足的导函数,则    (  ▲  )

A         B         C        D

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、观察(x2)'=2x,(x4)'=4x3,(cosx)'=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)与g(x)的关系是
g(-x)+g(x)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
x+2
(x>0),观察:
 f1(x)=f(x)=
x
x+2

 f2(x)=f(f1(x))=
x
3x+4

 f3(x)=f(f2(x))=
x
7x+8

 f4(x)=f(f3(x))=
x
15x+16


根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x
x+3
,观察:f1(x)=f(x)=
3x
x+3
f2(x)=f(f1(x))=
3x
2x+3
f3(x)=f(f2(x))=
x
x+1
f4(x)=f(f3(x))=
3x
4x+3
,…
根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=
 

查看答案和解析>>

同步练习册答案