精英家教网 > 高中数学 > 题目详情
7、某污水处理厂的一净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出,某天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过观察,得出了以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水也不出水.其中正确的是
(1)
分析:关键是通过图甲、乙,明确进水速度和出水速度,再根据图丙的折线图,判断进水,出水的状态.
解答:解:由图甲中可以看出一个进水管每小时的进水量为:20÷2=10立方米;
由图乙中可以看出每小时的出水量为:20÷1=20立方米.
0点到3点,水量增多了60立方米,每小时增多60÷3=20立方米,所以应判断开了2个进水管.(1)对;
3点到4点水减少的速度为每小时60-50=10立方米,可能是打开一个进水口又打开了一个出水口,(2)不对;
4点到6点的水位没变化,可能是打开两个进水口又打开了一个出水口.(3)不对.
故答案(1).
点评:考查由图象理解对应函数关系及其实际意义,先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断所给选项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•浦东新区一模)如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10
3
米,记∠BHE=θ.
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若sinθ+cosθ=
3
+1
2
,求此时管道的长度L;
(3)问:当θ取何值时,铺设管道的成本最低?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某污水处理厂的一净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出,某天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过观察,得出了以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水也不出水.其中正确的是 ______.

查看答案和解析>>

科目:高中数学 来源:2011年四川省南充高中高考数学猜题试卷(3)(解析版) 题型:填空题

某污水处理厂的一净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出,某天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过观察,得出了以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水也不出水.其中正确的是    

查看答案和解析>>

科目:高中数学 来源:2011年高三数学(文科)一轮复习讲义:2.8 函数模型及应用(解析版) 题型:解答题

某污水处理厂的一净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出,某天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过观察,得出了以下三个论断:(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水也不出水.其中正确的是    

查看答案和解析>>

同步练习册答案