精英家教网 > 高中数学 > 题目详情
如图,在边长为5的正方形中随机撒1000粒黄豆,有200粒落到阴影部分,据此估计阴影部分的面积为
 
考点:几何概型
专题:概率与统计
分析:先求出正方形的面积为25,设阴影部分的面积为x,由概率的几何概型知阴影部分面积为正方形面积的
200
1000
=
1
5
,由此能求出该阴影部分的面积.
解答: 解:设阴影部分的面积为x,
由概率的几何概型知,则
200
1000
=
1
5
=
x
25

解得x=5.
故答案为:5
点评:本题考查概率的性质和应用;每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型,可以用来求不规则图形的面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知θ∈(0,π),且sinθ+cosθ=
1
3
,求sinθ-cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,(ω>0)且函数f(x)=(
a
+
b
)•
b
-
1
2
的最小正周期为π.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若函数y=f(
x
2
+
π
3
),x∈(
π
2
,3π)
的图象与直线y=a的交点的横坐标成等比数列,试求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求1.02δ的近似值(精确到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(
π
2
-x)的图象(  )
A、关于x轴对称
B、关于y轴对称
C、关于原点对称
D、关于直线x=
π
2
对称

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)记f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C满足条件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λ•μ=
3
16
,则双曲线的离心率为(  )
A、
2
3
3
B、
3
5
5
C、
3
2
2
D、
9
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆E:(x+
3
)2+y2
=16,点F(
3
,0)
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)设直线l与(Ⅰ)中轨迹Γ相交于A,B两点,直线OA,l,OB的斜率分别为k1,k,k2(其中k>0).△OAB的面积为S,以OA,OB为直径的圆的面积分别为S1,S2.若k1,k,k2恰好构成等比数列,求
S1+S2
S
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=12,a6=27.
(1)求数列{an}的通项公式;
(2)求数列{an+2n}的前n项和Sn

查看答案和解析>>

同步练习册答案