精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
1-x+x2
(x∈[1,2])的最大值是(  )
A、
3
4
B、
4
5
C、1
D、
4
3
考点:函数单调性的性质
专题:函数的性质及应用
分析:先将函数变形为f(x)=
1
(x-
1
2
)
2
+
3
4
,x∈[1,2],通过讨论(x-
1
2
)
2
+
3
4
的单调性,从而得出函数的最值.
解答: 解:f(x)=
1
(x-
1
2
)
2
+
3
4
,x∈[1,2],
当x=1时,(x-
1
2
)
2
+
3
4
最小,为1,
∴f(x)max=f(1)=1,
故选:C.
点评:本题考查了函数的单调性问题,考查了二次函数的性质,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

M={x∈R|(1+k2)x≤k4+4},对任意的k∈R,总有(  )
A、2∉M,0∉M
B、2∈M,0∈M
C、2∈M,0∉M
D、2∉M,0∈M

查看答案和解析>>

科目:高中数学 来源: 题型:

函数g(x)=
1-x
+
1
x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若F1,F2是椭圆
x2
25
+
y2
16
=1的两个焦点,过F2的直线与椭圆交于A,B两点,则△ABF1的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线mx+y+m-1=0与圆x2-2x+y2-4y+1=0相交于A、B两点,求线段AB长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R),且g(1)-g(-
1
2
)=f(0).
(1)试求b,c所满足的关系式;
(2)若c=0时,方程f(x)=g(x)在(0,+∞)内有唯一解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=elnx,g(x)=
1
e
f(x)-(x+1)(e为自然对数).
(1)求函数g(x)的最大值;
(2)求证:e 1+
1
2
+
1
3
+…
1
n
>n+1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:log327×92

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥S-ABC中,SA=AB=AC=2,∠ASB=∠BSC=∠CSA=30°,M,N分别为SB,SC上的点,则△AMN周长最小值为
 

查看答案和解析>>

同步练习册答案